
C-Graph: A Highly Efficient Concurrent Graph Reachability
Query Framework

Li Zhou∗
The Ohio State University
zholi@cse.ohio-state.edu

Ren Chen∗
Huawei Research America
ren.chen@huawei.com

Yinglong Xia
Huawei Research America
yinglong.xia@huawei.com

Radu Teodorescu
The Ohio State University

teodores@cse.ohio-state.edu

ABSTRACT
Many big data analytics applications explore a set of related entities,
which are naturally modeled as graph. However, graph processing
is notorious for its performance challenges due to random data
access patterns, especially for large data volumes. Solving these
challenges is critical to the performance of industry-scale applica-
tions. In contrast to most prior works, which focus on accelerating
a single graph processing task, in industrial practice we consider
multiple graph processing tasks running concurrently, such as a
group of queries issued simultaneously to the same graph. In this
paper, we present an edge-set based graph traversal framework
called C-Graph (i.e. Concurrent Graph), running on a distributed
infrastructure, that achieves both high concurrency and efficiency
for k-hop reachability queries. The proposed framework maintains
global vertex states to facilitate graph traversals, and supports both
synchronous and asynchronous communication. In this study, we
decompose a set of graph processing tasks into local traversals
and analyze their performance on C-Graph. More specifically, we
optimize the organization of the physical edge-set and explore
the shared subgraphs. We experimentally show that our proposed
framework outperforms several baseline methods.

CCS CONCEPTS
•Computingmethodologies→Distributed algorithms;Con-
current algorithms; Massively parallel algorithms;

KEYWORDS
Graph Processing, Concurrent Queries, K-Hop Reachability, Dis-
tributed System

ACM Reference Format:
Li Zhou, Ren Chen, Yinglong Xia, and Radu Teodorescu. 2018. C-Graph:
A Highly Efficient Concurrent Graph Reachability Query Framework. In
ICPP 2018: 47th International Conference on Parallel Processing, August 13–16,

∗Contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225136

2018, Eugene, OR, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3225058.3225136

1 INTRODUCTION
Graph processing has been widely adopted in big data analytics
and plays an increasingly important role in knowledge graph and
machine learning applications [11, 12, 39]. Many real-world scenar-
ios such as social networks, web graphs, wireless network, etc., are
naturally represented as large-scale graphs [8, 17]. Modeling appli-
cations as graphs provides an intuitive representation that allows
exploration and extraction of valuable information from data. For
example, in recommendation systems, information about neighbors
is analyzed in order to predict the user’s interests and improve
click-through rate (CTR). High performance graph processing also
benefits a wealth of important algorithms. For instance, mapping
applications make extensive use of shortest path graph traversal
algorithms for navigation. In order to effectively manage and pro-
cess graphs, graph databases such as JanusGraph [4], Neo4j [29]
and others have been developed. Graph processing frameworks
are also commonly found as critical components in many big data
computing platforms, such as Giraph in Hadoop, GraphX in Spark,
Gelly in Flink, etc [2, 10, 30, 37].

One of the fundamental operations that a graph processing sys-
tem must handle efficiently is the graph traversal. For example, the
"reachability query" is essentially a graph traversal to search for a
possible path between two given vertices in a graph. Graph queries
are often associated with constrains such as a mandatory set of ver-
tices and/or edges to visit, or a maximum number of hops to reach
a destination. In weighted graphs, such as those used in modeling
software-defined-networks (SDNs), a path query must be subject
to some distance constraints in order to meet quality-of-service
latency requirements [38].

Many real-world applications rely on k-hop [5], a variant of the
classic reachability query problem. In k-hop the distance from a
given node often indicates the level of influence. For example, in
wireless, sensor or social networks the signal/influence of a node
degrades with distance. The potential candidate of interest is of-
ten found within a small number of hops. Real-world networks
are generally tightly connected, making k-hop query very relevant.
According to the "six degrees of separation" principle, which claims
that a maximum of six steps are needed to connect any two people,
most of the network will be visited within a small number of hops.
As a results, k-hop reachability often exists as an intermediate "op-
erator" between low-level database and high-level algorithms [19].

https://doi.org/10.1145/3225058.3225136
https://doi.org/10.1145/3225058.3225136
https://doi.org/10.1145/3225058.3225136

ICPP 2018, August 13–16, 2018, Eugene, OR, USA L. Zhou et al.

Many higher-level analyses can be described and implemented in
terms of k-hop queries, such as triangle counting which is equiva-
lent to finding vertices that are within 1 and 2-hop neighbors of the
same vertex. Therefore, a graph processing system’s ability to han-
dle k-hop access patterns predicts its performance on higher-level
analyses.

Compared to many big data systems, graph processing generally
faces significant performance challenges. One such challenge for
graph traversals is poor data locality due to irregular data access
patterns in many graph problems. As a result, graph processing is
typically bound by a platform’s I/O latency, rather than its compute
throughput [9, 31]. In distributed systems the overheads of com-
munication beyond machine boundaries, such as network latency,
exacerbate I/O bottlenecks faced by graph processing systems.

Another challenge for most existing graph processing frame-
works is to efficiently handle concurrent queries. These systems
are often optimized to either improve performance or reduce I/O
overhead, but are not capable of responding to concurrent queries.
In enterprise applications, a system usually has to gracefully handle
multiple queries at the same time. Also, since multi-user setups
are common, several users can send out query requests simulta-
neously. Graph databases are often designed with concurrency in
mind, but they generally have poor performance in graph analysis,
especially in terms of handling large-scale graphs or high volumes
of concurrent queries [31].

In this paper, we propose an efficient distributed concurrent
query framework called C-Graph, short for Concurrent Graph pro-
cessing system, to process concurrent local graph traversal tasks
such as those in the k-hop reachability query. We take a high level
view of the graph processing system design. While improving the
efficiency of each processing unit, we consider both disk I/O and
network I/O as elements of the storage bandwidth. C-Graph is
designed as a traditional edge-centric sharding-based graph pro-
cessing system. The main contributions of our framework can be
summarized as follows:

• A simple range-based partition is adopted to reduce the
overhead of complex partitioning scheme for large-scale
graphs. Multi-mode, edge-set-based graph data structures
optimized for sparsity and cache locality are used in each
partition to achieve the best performance for different access
patterns.

• The framework explores data locality between overlapped
subgraphs, and utilize bitwise operations and shared global
states for efficient graph traversals.

• In order to reduce the memory consumption of concurrent
graph queries in a single instance, we utilize dynamic re-
source allocation during graph traversals. Instead of saving
a value per vertex, we only store vertex values for those in
the previous and current levels.

• Synchronous/asynchronous update models are supported for
different types of graph applications, such as graph traversals
and iterative computation (e.g. PageRank).

• Our system targets on the reduction of the average response
times for concurrent graph queries on large-scale graphs
with up to 100 billion edges in distributed environments.

Figure 1: The hop plot for Slashdot Zoo graphs [15].

The rest of this paper is organized as follows: we first intro-
duce the background of graph traversals and concurrent queries
in section 2, then we discuss the main features and programming
interface of our distributed query system in section 3. In section 4
we evaluate our system performance and scalability. Lastly, we
discuss related work in section 5 and conclude in section 6.

2 BACKGROUND
A graph is denoted by G = (V ,E), where V is a set of vertices and
E is a set of edges connecting the vertices; an edge e = {s, t ,w} ∈ E
is a directed link from vertex s to t , with weightw for a weighted
graph. Note that in graph database terminology the weightw can
also be referred to as the property of edge e .

Graph Traversal and k-hop Reachability Query. Graph tra-
versal is the process of visiting a graph by starting from a given
source vertex (a.k.a. the root) and then following the adjacency
edges in certain patterns to visit the reachable neighborhood itera-
tively. Examples of basic graph traversal methods include visiting a
graph in breadth-first-search (BFS) and/or depth-first-search (DFS)
manners. Most graph applications or queries are essentially per-
forming computations on the vertex values and/or edge weights
while traversing the graph structure. For example, the single-source-
shortest-path (SSSP) algorithm finds the shortest paths from a given
source vertex to other vertices in the graph by accumulating the
shortest path weights on each vertex with respect to the root.

The k-hop reachability query [5] is essentially a local traversal
in a graph, which starts from a given source vertex and visits ver-
tices within k hops. It is a widely used building block in graph
applications. In practice, the influence of a vertex usually decreases
as the number of hops increases. Therefore, for most applications,
potential candidates will be found within a small number of hops.
In addition, real-world networks are often tightly connected. For
example, Figure 1 shows the cumulative distribution of path lengths
over all vertex pairs in the Slashdot Zoo network. In this network,
the diameter (δ) equals 12. The 50-percentile effective diameter
(δ0.5) equals 3.51, and 90-percentile effective diameter (δ0.9) equals
4.71. So most of the network will be visited with less than 5 hops,
which is consistent with the six-degrees-of-separation theory in
social networks.

The k-hop query is frequently employed as an intermediate "op-
erator" between low-level databases and high-level algorithms [19].
Many higher-level functions such as triangle counting, which is

C-Graph: A Highly Efficient Concurrent Graph Reachability Query Framework ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Network

Disk

Processing
Unit

shard 0 shard 1 shard n

......

Disk Disk

Processing
Unit

Processing
Unit

Figure 2: Overview of edge-centric sharding-based graph
processing system design.

equivalent to finding vertices that are within 1 and 2-hop neighbors
of the same vertex, can be described and implemented in terms of
k-hop traversal. Breadth-first-search (BFS) is a special case of k-hop,
where k → ∞. As a result, a graph database’s ability to handle
k-hop access patterns is a good predictor of its performance.

Concurrent Queries in Large-scale Graphs. The ability to
handle concurrent queries is very important for industrial big
data products. However, adding concurrency support in graph
databases or graph processing systems is challenging. For example,
graph databases like Titan [3], JanusGraph (based on Titan) [4] and
Neo4j [22] are designed with multi-query/user in mind. However,
their performance when executing concurrent graph queries is gen-
erally poor. In our experiments Titan took 10 seconds on average
to complete 100 concurrent 3-hop queries for a graph of 100 million
edges. For some of the queries, the response time was as high as
100 seconds. Other graph databases like Neo4j are not distributed
and cannot, as a result, support many real world graphs such as
web-scale graphs partitioned over multiple machines.

Highmemory footprint is another challenge for large-scale graph
processing. Concurrent graph queries, generally have high memory
usage, which can significantly degrade the response times for all
queries. As a result, most of the graph processing systems can’t be
easily changed to run concurrent queries. These systems are usu-
ally highly optimized for certain applications with high resources
utilization, but system failures may be triggered when running
concurrent queries due to memory exhaustion.

3 SYSTEM DESIGN
In this section, we introduce the main features of our graph pro-
cessing framework.
Overview. Figure 2 shows an overview of our framework running
on a cluster of computing nodes connected by a high-speed network.
Each node consists of a processing unit with a cached subgraph
shard. The processing units are CPUs in our current framework,
and can be extended to GPUs or any other graph processing accel-
erators. Each subgraph shard contains a range of vertices called
local vertices, which are a subset of all graph vertices. Boundary
vertices with respect to a subgraph shard are vertices from other
shards that have edges connecting to the local vertices of the sub-
graph. Each subgraph shard stores all the associated in/out edges as
well as the property of the subgraph. The graph property includes
vertex values, and edge weights (if the graph is weighted). Each
processing unit computes on its own subgraph shard and updates

the graph property iteratively. It is also responsible for sending the
values of boundary vertices to other processing units. Structuring
the graph processing system this way allows us to decouple compu-
tation from communication. We focus on improving the computing
efficiency of each processing unit based on its available architecture
and resources. Then, we treat all communications as an abstraction
of the I/O hierarchy (i.e. memory, disk, and network latency). Note
that a subgraph shard does not necessarily need to fit in memory;
as a result, the I/O cost may also involve local disk I/O.

3.1 Range-based Graph Partitioning
Graph partitioning is an important step in optimizing the perfor-
mance of a graph processing system where the input graphs cannot
fit in a node’s memory. Many system variables such as workload
balance, I/O cost etc. are often considered when designing a graph
partitioning strategy. There can be different optimal partition strate-
gies depending on the graph structure and application behavior.
Moreover, re-partitioning is often required when graphs change,
which is costly for large-scale graphs. Our solution is to adopt a
lightweight low-overhead partitioning strategy. Our framework
deploys a simple range-based partition similar to GraphChi[16],
GridGraph [41], Gemini [40] etc. Vertices are assigned to different
partitions based on vertex ID, which is re-indexed during graph
ingestion. Each partition contains a continuous range of vertices
with all associated in/out edges and subgraph properties. To bal-
ance the workload, we optimize each partition to contain a similar
number of edges. In a p-node system, a given graphG = (V ,E) will
be partitioned into p continuous subgraphs Gi = (Vi ,Ei), where
i = 0, 1, ...,p − 1. In each Gi , Vi are local vertices and Ei is a set of
edges {s, t ,w}, where either source s or destination t belongs to Vi .
The rest of the vertices in other partitions are boundary vertices.
Assigning all out-going edges of a vertex to the same partition is
a way of improving the efficiency of local graph traversals. We
also store incoming edges when running graph algorithms such as
PageRank.

3.2 Multi-modal Edge-set based Graph
Representations

We adopt multi-modal graph representations in our framework
to accommodate different access patterns and achieve best data
locality for different graph applications. Compressed sparse row
(CSR) is a common storage format to store the graph. It provides
an efficient way to access the out-going edges of a vertex, but it
is inefficient when accessing the incoming edges of a vertex. To
address this inefficiency, we choose to store the incoming edges in
compressed sparse column (CSC) format, and out-going edges in
compressed sparse row (CSR) format.

To improve cache locality, we explore iterative graph computing
with an edge-set based graph representation [6, 16, 41]. Similar to
the range-based partitioning, each subgraph partition is further
converted into a set of edge-sets. Each edge-set contains vertices
within a certain range by vertex ID. As shown in Figure 3a, an input
graph represented in adjacency matrix format is divided into two
partitions, with each partition converted into eight edge-sets. To
traverse a graph through out-going edges, we scan the blocked
adjacency matrix left to right.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA L. Zhou et al.

Figure 3: An example of edge-set based graph representation.

(a) An input graph is divided into two subgraph partitions,

and each partition is converted into 8 edge-sets. To traverse

a graph through out-going edges is equivalent to scan the

edge-sets in left-right pattern. (b) Graph traversal trees for

two concurrent queries. First three levels are presented in

the example.

Generating edge-sets is straightforward. We first obtain vertex
degrees after partitioning the input graph across machines, and
then we divide the vertices of each subgraph into a set of ranges by
evenly distributing the degrees. Next, we scan the edge list again and
allocate each edge to an edge-set according to the ranges into which
source and destination vertices fall. Finally, within each edge-set, we
generate the CSR/CSC format using local vertex IDs calculated from
global vertex ID and partition offset. The preprocessing reduces
the complexity of global sorting, and is conducted in a divide-and-
conquer manner.
The granularity of an edge-set is chosen such that the vertex

values and associated edges fit into the last level cache (LLC). How-
ever, the sparse nature of real large-scale graphs can result in some
tiny edge-sets that consist of only a few edges each, if not empty.
Loading or persisting many such small edge-sets is inefficient due
to the I/O latency. Therefore, it makes sense to consolidate small
edge-sets that are likely to be processed together, so that data lo-
cality is potentially increased. Consolidation can occur between
adjacent edge-sets both horizontally and vertically. The horizontal
consolidation improves data locality especially when we visit the
out-going edges. Vertical consolidation benefits the information
gathering from the vertex’s parents.
Concurrent graph traversals can benefit from edge-set repre-

sentation from two dimensions of locality maintained inside an
edge-set: 1) shared neighbor vertices of frontiers within an edge-set
and 2) shared vertices among queries. A simple example is shown
in Figure 3b, where two concurrent queries are presented, each by
a graph traversal tree of three levels. Visiting neighbors of vertex 2
and 3 takes just one pass on edge-sets P1i , i = 0, 1, 2, 3, and since
these two vertices are shared among both queries, query perfor-
mance can be improved by making only one traversal on these two
vertices. The compute engine performs user-defined functions on

Figure 4: Graph query workflow.

Figure 5: A simple two-partition graph example with four

concurrent graph traversals starting from all four vertices.

Different queries are distinguished using different symbols.

Each partition has an inbox buffer for incoming tasks and

an outbox buffer for outgoing tasks. Each task is associated

with the destination vertex’s unique ID. The visited vertices

are synchronized after each iteration and won’t be visited.

edges within each edge-set in parallel. Edge-set graph representa-
tion also improves cache locality for iterative graph computations
like PageRank from two aspects: 1) sequential accesses to edges
within a local graph and 2) write locality preserved by storing the
edges in CSC format. Updating the vertex value array in ascend-
ing order also leads to better cache locality while enumerating the
edges in a edge-set.

3.3 Query Processing

Efficient implementation of a distributed graph engine requires bal-
ancing computation, communication and storage. Our framework
supports both the vertex-centric and partition-centric models. We
specifically optimized the partition-centric model to handle graph
traversal-based algorithms such as k-hop, BFS. The performance of
such models depends strongly on the quality of the graph partitions.
Figure 4 shows the graph traversal iterations in the partition-centric
model (which generally requires fewer supersteps to converge com-
pared to the vertex-centric model). In the partition-based model,
vertices can be classified into local vertices and boundary vertices.
The values for local vertices are stored in the local partition, while

C-Graph: A Highly Efficient Concurrent Graph Reachability Query Framework ICPP 2018, August 13–16, 2018, Eugene, OR, USA

vo id a b s t r a c t compute () ;
vo id sendTo (V d e s t i n a t i o n , M msg) ;
vo id vo t eToha l t () ;
boo l i fHa sVe r t e x (V v id) ;
boo l i s L o c a l V e r t e x (V v id) ;
boo l i sBounda ryVer t ex (V v id) ;
C o l l e c t i o n g e t L o c a l V e r t i c e s () ;
C o l l e c t i o n ge tBounda ryVe r t i c e s () ;
C o l l e c t i o n g e t A l l V e r t i c e s () ;
vo id b a r r i e r () ;

Listing 1: Partition-centric Model [27]

boundary vertex values are stored in the remote partitions. Local
vertices communicate with boundary vertices through messages. A
vertex can send a message to any other vertices in the graph using
the destination vertex’s unique ID.

To illustrate the partition-centric model, we consider two op-
erations: local read and remote write, both of which incur cross-
partition communications. Local read is performed when reading
the value of a boundary vertex. For example, the PageRank value
of a local vertex is calculated from all the neighboring vertices,
some of which are boundary vertices. In this case, a locally updated
vertex value has to be synchronized across all partitions after each
iteration. In other cases, a partition may need to update the value
of a boundary vertex of the partition. For example, in subgraph
traversals involving traversing depth, when a boundary vertex is
visited, its depth needs to be updated remotely. The boundary ver-
tex ID with its value along a traverse operator will be sent to the
partition to which it belongs. In that partition, the vertex value will
be asynchronously updated and the traversal on that vertex will
be performed based on the new depth. In a sense, all vertices are
updated locally to achieve the maximum performance through effi-
cient local computation, and all changes of the graph property are
exchanged proactively across partitions using high speed network
connections. A simple example of subgraph traversal is shown in
Figure 5.

Concurrent queries can be executed individually in request order,
or processed in batches to enable subgraph sharing among queries.
To mitigate the memory pressure in concurrent graph queries, we
utilize dynamic resource allocation during graph traversals. We
only need to keep vertex values for those in previous and current
levels, instead of saving value per vertex during the entire query.

3.4 Programming Abstraction
We next introduce the programming API deployed in our frame-
work.We provide an interface for the partition-centricmodel, which
was first introduced by Giraph++ [27] and has been quickly adopted
and further optimized in recent works [25, 34]. Listing 1 shows the
interface of the basic methods call in the partition-centric model.

We provide two functions to accommodate different categories
of graph applications: a) graph traversal on graph structure and b)
iterative computation on graph property. Graph traversal involves
data-intensive accesses and limited numeric operations. The irregu-
lar data access pattern leads to poor spatial locality and introduces
significant pressure on the memory subsystem. Computation on
graph property often involves more numeric computation which
shows hybrid workload behaviors [20]. The graph traversal pattern

de f T r ave r s e (t a s k queue : Q , hops : k) {
wh i l e any s in Q {

i f (s . hops < k) {
i f (i s L o c a l V e r t e x (s)) {

f o r (t i n s . n e i ghbo r s and ! v i s i t e d (t)) {
t . hops = s . hops + 1
i f (i s L o c a l V e r t e x (t)) Q . push (t)
e l s e sendTo (t , t . hops)
v i s i t e d (t) = t r u e

}
}

}
Q . pop (s)

}
}

Listing 2: k-hop Traversal: For each vertex in a local task
queue, visits its neighbors and puts them into two queues
based on: local vertices will be inserted into the local task
queue, while boundary vertices will be sent to a remote task
queue. All neighbors will be marked as visited and shared
cross all processing units. The maximum depth of traversal
is defined by hops k.

is defined in theTraverse function, and the iterative computation is
defined in Update function. An example of k-hop implementation
is shown in Listing 2.

de f Gather (v , sum) sum += v . v a l
d e f Apply (v , sum) v . v a l = 0 . 1 5 + 0 . 8 5 ∗ sum
de f S c a t t e r (v) v . v a l / v . ou tdeg r e e

Listing 3: PageRank: The gather phase collects inbound
messages. The apply phase consumes the final message sum
and updates the vertex data. The scatter phase calculates the
message computation for each edge.

The Update function is an implementation of the Gather-Apply-
Scatter (GAS) model by providing a vertex-programming interface.
A PageRank example using the GAS interface is shown in Listing 3.
The function looks no different than a normal GAS model graph
processing framework. However, our implementation does not gen-
erate additional traffic in the gather phase since all edges of a vertex
are local.

3.5 Concurrent Queries Optimization
We further optimize the concurrent queries by leveraging several
state-of-art techniques. In practice, it is inefficient to use a set or
queue data structure to store the frontier since the union or set
operation is expensive with a large number of concurrent graph
traversals. In addition, the dramatic difference in frontier size at
different traversal levels introduces dynamic memory allocation
overhead. It also requires a locking mechanism if the frontier is
processed by multiple threads. Instead of maintaining a task queue
or set, we implement the approach introduced in MS-BFS [26] to
track concurrent graph traversal frontier and visited status, and
extend it to distributed environments. For each query, we use 2 bits
to indicate if a vertex exists in the current or next frontier, and 1 bit
to track if it has been visited. A fixed number of concurrent queries
are decided based on hardware parameters, for example, the length
of the cache line. The frontier, frontierNext and visited are stored in
arrays for each vertex to provide constant-time access.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA L. Zhou et al.

Figure 6: An example of bit operations for two concurrent queries.

An example graph is shown in Figure 6. A graph with 10 ver-
tices is divided into two machines using range-based partitioning.
Partition 0 contains vertices V : {0 ∼ 4}, and partition 1 contains
vertices V : {5 ∼ 9}. Each partition maintains a frontier and vis-
ited bit array for each query. Figure 6b shows the traversal tree
for each query. In the example, we show two concurrent queries
starting from source vertices 0 and 4. Figure 6c shows the bit array
representations for frontier and visited nodes. The frontier in the
current hop is from frontierNext in the previous level. Each row
represents a vertex, and each column represents a query. The main
idea behind this is queries share same vertices in each iteration, and
data locality is preserved if updating concurrent queries at same
time.

4 EXPERIMENTAL EVALUATION

To evaluate the efficiency of our system and its optimizations, we
measured the system performance using both real-world and semi-
synthetic graph datasets. We tested our system with various types
of graph algorithms, and reported experimental results on scala-
bility with respect to input graph size, number of machines and
number of queries. We compared the performance of our system
with open-source graph database Titan [3], and state-of-the-art
graph processing engine Gemini [40].

4.1 Experimental Setup

Graph Algorithms. In our experimental evaluation, we used two
graph algorithms to show the performance of our system running
different types of graph applications.

K-Hop Query is a fundamental algorithm for graph traversals.
We use it to evaluate the performance of concurrent queries. Most
of our experiments are based on the 3-hop query, which traverses

Table 1: Datasets Description

Experimental Datasets Vertices Edges

Orkut (OR-100M) 3,072,441 117,185,083
Friendster (FR-1B) 65,608,366 1,806,067,135

Friendster-Synthetic (FRS-72B) 131,216,732 72,224,268,540
Friendster-Synthetic (FRS-100B) 984,125,490 106,557,960,965

all vertices in a graph that are reachable within 3 hops from the
given source vertex. For each query, we maintain a frontier queue
and visited status for each vertex. Initially all vertices are set as
not visited, and frontier contains the source vertex. The level of a
visited vertex or its parent is recorded as vertex value. The unvis-
ited neighbors of the vertices in the frontier will be added to the
frontier for the next iteration. The details of the implementation
are illustrated in Listing 2. The main factor we used to evaluate
the performance of the query system is the response time for each
query in a concurrent queries environment. We tested from 10 to
350 concurrent queries, and reported the query time for each query.

PageRank is a well-known algorithm that calculates the impor-
tance of websites in a websites graph. In PageRank all vertices are
active during the computation. The vertex page-rank value is up-
dated after gathering all the neighbors’ page-rank values. In our
experiments, we ran 10 iterations for performance comparison. An
illustration of our implementation using the GAS (Gather-Apply-
Scatter) API is shown in Listing 3, with the sum value for each vertex
initialized to zero. Although our system is mainly for the concurrent
queries, we use PageRank to evaluate the iterative graph computa-
tion applications, which have different access patterns compared
to graph traversals.

Software and Hardware Configuration.We conducted most of
our experiments on a 9 server machines cluster, each has an Intel(R)
Xeon(R) CPU E5-2600 v3, having a total of 44 cores at 2.6 GHz
and 125 GB main memory. Our system and all algorithms were
implemented in C++11, compiled with GCC 5.4.0, and executed on
Ubuntu 16.4. We used Socket and MPI (Message Passing Interface)
for network communication.

Datasets. In our evaluation, we experimented with both real-world
and semi-synthetic datasets. We used two real world graphs: Orkut
and Friendster from SNAP [17], and two semi-synthetic graphs:
both are generated from Graph 500 generator with Friendster to
test the system’s ability to process graphs at different scales. Orkut
and Friendster are on-line social networks where users form friend-
ships with each other. Orkut has 3 million vertices and 117 million
edges with a diameter of 9, while Friendster has 65.6 million and
1.8 billion edges with a diameter of 32. Both graphs form large con-
nected components with all edges. Two semi-synthetic graphs are
generated with Graph 500 generator and Friendster graph. Given a
multiplying factorm, the Graph 500 generator produces a graph

C-Graph: A Highly Efficient Concurrent Graph Reachability Query Framework ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 7: Single machine performance comparison of 100

concurrent 3-hop queries with Titan running OR-100M

graph.

havingm times vertices of Friendster, while keeping the edge/vertex
ratio of the Friendster. The smaller semi-synthetic graph has 131.2
million vertices and 72.2 billion edges, and the larger semi-synthetic
graph has 985 million vertices and 106.5 billion edges. The details
of each graph are shown in Table 1.

4.2 Experimental Results

We used the open-source graph database Titan [3], which supports
concurrent graph traversals, as a baseline. Since Titan took hours to
load a large graph, we used a small graph Orkut to compare the sin-
gle machine performance running Orkut on Titan with our system.
We used the internal APIs provided by Titan for both graph tra-
versals and PageRank. We also experimented with the well-known
open-source graph database Neo4j [22]. However, this system was
even slower to load and traverse a large graph. Therefore, we did
not include Neo4j in our comparison.

Howdoes Response Time Impact User Experience? Before we
dive into the experimental results, we first discuss an important
quality metric of an online business like a website or a database:
response time. There is a strong correlation between response time
and business metrics since wait time heavily impacts user experi-
ence. To quantify the performance impact on a query, the following
three thresholds have been defined [1, 24]:

• Users view response time as instantaneous (0.1-0.2 second):
Users can get query results right away and feel that they
directly manipulate data through the user interface.

• Users feel they are interacting with the information (1-5
seconds): They notice the delay, but feel that the system is
working on the query. A good threshold is under 2 seconds.

• Users are still focused on the task (5-10 seconds): They keep
their attention on the task. This threshold is around 10 sec-
onds. Productivity suffers after a delay above this threshold.

According to the above thresholds, we would reasonably expect a
distributed graph processing system to respond to a set of (say, 100–
300) concurrent queries within very a few seconds (say 2 seconds).

(a) OR-100M (b) FR-1B

Figure 8: Response time distribution comparison of 100 con-

current 3-hop queries. (a) Compared with Titan running

Orkut (OR-100M) graph on single machine. (b) Compared

with Gemini running Friendster (FR-1B) graph on three ma-

chines.

System Performance.We compared the concurrent 3-hop query
and PageRank performance with the graph database Titan [3] on a
single machine. We run 100 concurrent queries for both systems,
with each query containing 10 source vertices. The source vertices
are randomly chosen, with each system performing 1000 random
subgraph traversals to avoid both graph structure and system biases.
The average response time for a query is calculated from the 10
subgraph traversals of each query, and average response times for
100 queries are shown in Figure 7, sorted in ascending order.
The results were encouraging, with C-Graph achieving a 21×–

74× speedup over Titan. Moreover, our system exhibited a much
lower upper bound on query time, with all 100 3-hop queries return-
ing within 1 second, while Titan took up to 70 seconds for some
queries. In addition, our system showed much lower variation in
response time.
We also compared the distribution of all 1000 subgraph traversal

times, with the results shown in Figure 8a. The average query
response time is 8.6 seconds for Titan, and only 0.25 second for
C-Graph. About 10% of the queries in Titan took more than 50
seconds and up to hundreds of seconds. This is likely due to the
complexity of the software stack used in Titan, such as the the
data storage layers and Java virtual machine. These inefficiencies
make the results for PageRank running on Titan even worse. For
the Orkut (OR-100M) graph, Titan execution time was hours for
a single iteration while C-Graph only took seconds. Overall, our
system showed both better and more consistent performance gains
compared to Titan.
Most existing graph processing systems lack the ability to handle

concurrent queries in large-scale graphs. We use Gemini as an
example of how inefficient a design that lacks concurrency can be.
Simply using the alternativeway instead of re-design the concurrent
support, for example making Gemini start with multiple source
vertices, will fail. In these systems, concurrently-issued queries are
serialized and a query’s response time will be determined by any

ICPP 2018, August 13–16, 2018, Eugene, OR, USA L. Zhou et al.

Figure 9: Data size scalability results of response times for

100 concurrent 3-hop queries.

backlogged queries in addition to the execution time for current
query. We used three machines and repeated the 100 queries with
the Friendster (FR-1B) graph on both systems. The response time
distribution is shown in Figure 8b. Even though Gemini is very
efficient and only takes tens milliseconds for a single 3-hop query,
the average query response time is around 4.25 seconds due to the
stacked up wait time. The average response time for C-Graph is
only about 0.3 seconds.
Next we focus on the scalability of our system. We ran experi-

ments with different input graph datasets, increasing number of
machines and query counts.

Data Size Scalability. For concurrent queries, an important perfor-
mance indicator is how the upper bound of the response time scales
as the input graph size increases. A good query system should guar-
antee that all queries return within latencies that are acceptable to
the users. To understand how our system scales with increased in-
put graph size, wemeasured its response times for different datasets:
Orkut (OR-100M) with 100 million edges, Friendster (FR-1B) with 1
billion edges, and Friendster-Synthetic (FRS-100B) with 100 billion
edges.
Figure 9 shows the histogram of response time for 100 concur-

rent 3-hop queries running different graphs with 9 machines. We
observed that for both graphs, about 85% queries return within
0.4 second for FR-1B, and for FRS-100B the response time slight
increases to 0.6 second for the same percentage of queries. The
upper bound of query response time is 1.2 seconds for FR-1B, and
for FRS-100B it increases slightly to 1.6 seconds. The upper bound
of response time for both graphs is within the 2.0 seconds thresh-
old. Note that the response time highly depends on the average
degree of root vertices, which is 38, 27, 108 for OR-100M, FR-1B
and FRS-100B, respectively.

Multi-machine Scalability.We studied the scalability of our sys-
tem with an increasing number of machines. We experimented both
types of applications: PageRank and concurrent 3-hop queries.
We examined the inter-machine scalability using 1 to 9 machines

to run PageRank on graph datasets OR-100M, FR-1B and FRS-72B.
The results are shown in Figure 10. All results are normalized to

Figure 10: Multi-machine scalability results for PageRank.

single machine execution time of corresponding graph. Overall the
scalability is very good. For FR-1B graph, it achieves speedup of 1.8x,
2.4x, and 2.9x using 3, 6 and 9 machines, respectively. With more
machines the inter-machine synchronization becomes more chal-
lenging. In the smallest graph OR-100M, as expected, the scalability
becomes poor beyond 6 machines as communication time domi-
nates the execution. We observed better scalability with the largest
graph FRS-72B, achieving up to 4.5x speedup with 9 machines.
Figure 11 depicts the response time distribution for 100 con-

current k-hop queries on a single graph using different number
of machines. While the machine number increases, most of the
queries are able to be completed in a short time, i.e., 80% queries
receive a response within 0.2 seconds, and 90% queries finish within
one second. For a fixed amount of concurrent traversal queries, as
the number of machines used grows up, the number of visited dis-
tinct vertices does not vary, while the number of boundary vertices
increases significantly. More boundary vertices lead to increased
communication overhead for synchronization. In our framework,
we employ the partition-centric model combined with the edge-set
technique to solve this problem.

Query Count Scalability. The main goal of our framework is to
execute concurrent graph queries efficiently. To evaluate this prop-
erty, we study the scalability of our framework as the query count
increases. Figure 12 shows the response time distribution for in-
creasing number of concurrent 3-hop queries running the FRS-100B
graph on 9 machines. Up to 100 concurrent 3-hop queries, most
of the queries can finish in a short time. 80% of the queries are
completed within 0.6 seconds, and 90% queries finish within one
one second. When the concurrent query count reaches 350, the
performance of C-Graph begins to degrade. About 40% queries are
able to respond within one second, 60% queries can finish within
the 2 seconds threshold. We have to wait 4 to 7 seconds for the re-
maining queries. The slowdown of the framework is mainly caused
by resource limits, especially due to the large memory footprint
required for concurrent queries. Since every query returns with
found paths, the memory usage increases linearly with the query
count.
We further compared the performance and scalability of C-Graph

to Gemini in order to maximize the query hops. We experimented

C-Graph: A Highly Efficient Concurrent Graph Reachability Query Framework ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 11: Multi-machine scalability results for 100 queries with FR-1B graph.

Figure 12: 3-hop query count scalability results for FRS-100B graph.

Figure 13: Performance comparison of concurrent BFS

queries with Gemini running FR-1B graph on three ma-

chines.

with 1, 64, 128 and 256 concurrent BFS queries using the Friendster
(FR-1B) graph on 3 machines. Since Gemini doesn’t support concur-
rent queries, we reported total execution time for serialized queries
running on Gemini. Also, because our framework reaches the sys-
tem’s memory limit when running higher number of hops with
more than 25 concurrent BFS queries, we enabled bit operations in
this experiment. As Figure 13 shows, the execution time for Gemini
is linear with the number of concurrent BFS queries. C-Graph starts
with the same performance for a single BFS which is about 0.5
seconds. However C-Graph execution time increases sublinearly
with the number of concurrent BFS queries. As a result C-Graph
outperforms Gemini by about 1.7× at 64 and 128 concurrent BFSs,
and 2.4× at 256 concurrent BFSs.

5 RELATED WORK

Graph Processing Systems with Query Support. Neo4j [22]
and HyperGraphDB [14] focus on supporting online transaction
processing (OLTP) on graph data. However, they are not distributed
and cannot support web-scale graphs partitioned over multiple ma-
chines. Titan [3] supports distributed graph traversals over multiple
machines, but its performance is a concern due to the complexity of
its software stack. State-of-art graph processing systems often have
better performance, however, they generally lack native support for
concurrent queries [28, 35, 36, 40]. For example, Gemini [40] is an
efficient distributed graph computing system, which outperforms
C-Graph in single application performance. However, it cannot
handle concurrent queries. Executing the queries serially increases
the average response time.
Concurrent Graph Queries. There is an increasing interest in
concurrent graph processing including queries for graph processing
systems [7, 13, 18, 21, 23, 26, 32, 33]. However, we found that prior
works on concurrent queries usually evaluate only small graphs,
and don’t support distributed environments. MS-BFS [26] intro-
duced level sharing and bitwise operation for efficient multi-source
BFS. It works for small-world graphs, and only supports query-
ing in batches and may therefore not be suitable in an interactive
multi-user environment. iBFS [18] supports concurrent queries on
multi-GPUs. However, iBFS does not partition the graph, it simply
copies it on multiple GPUs, and distributes the queries across all of
them. The system is limited to graphs that can fit in their entirety
in the GPU memory and therefore it only works for small graphs.
Wukong [23] is a distributed graph-based RDF store that leverages
RDMA-based graph exploration to provide highly concurrent and
low-latency queries over large data sets. Congra [21] extended an
existing shared-memory graph processing framework and provided
a novel scheme for scheduling concurrent graph processing queries
on shared memory based systems. It supports more complex graph

ICPP 2018, August 13–16, 2018, Eugene, OR, USA L. Zhou et al.

algorithms involving graph computation so it was only evaluated
with small graphs of at most one hundred millions edges.

6 CONCLUSION AND FUTUREWORK
In this paper we presented our work on a concurrent graph pro-
cessing framework called C-Graph. This system is designed to meet
the industrial requirements of efficiently handling a group of simul-
taneous graph queries on large graphs, rather than accelerating a
single graph processing task exclusively on a server/cluster as in
prior work. To achieve this goal, the proposed framework maintains
global vertex states to facilitate graph traversals, and supports both
synchronous and asynchronous communication interfaces. For any
graph processing tasks that can be decomposed into a set of local
traversals, such as the graph k-hop reachability query, our proposed
system exhibited excellent performance. In future work, we will
look into more architectural optimization of the infrastructure for
cloud computing platforms to further improve concurrent graph
computing performance, and extend the framework to support
more types of graph applications.

REFERENCES
[1] 2011. How Response Times Impact Business? https://calendar.perfplanet.com/

2011/how-response-times-impact-business/. (2011).
[2] 2014. Apache Giraph. https://giraph.apache.org/. (2014).
[3] 2014. Titan Distributed Graph Database. http://thinkaurelius.github.io/titan/.

(2014).
[4] 2017. JanusGraph Distributed Graph Database. https://github.com/JanusGraph/

janusgraph. (2017).
[5] James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, and Jeffrey Xu Yu.

2012. K-reach: who is in your small world. Proceedings of the VLDB Endowment
5, 11 (2012), 1292–1303.

[6] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong
Yang. 2016. NXgraph: an efficient graph processing system on a single machine.
In Data Engineering (ICDE), 2016 IEEE 32nd International Conference on. IEEE,
409–420.

[7] Ayush Dubey, Greg D Hill, Robert Escriva, and Emin Gün Sirer. 2016. Weaver: a
high-performance, transactional graph database based on refinable timestamps.
Proceedings of the VLDB Endowment 9, 11 (2016), 852–863.

[8] Karthi Duraisamy, Hao Lu, Partha Pratim Pande, and Ananth Kalyanaraman.
2016. High-Performance and Energy-Efficient Network-on-Chip Architectures
for Graph Analytics. ACM Trans. Embed. Comput. Syst. 15, 4 (2016), 66:1–66:26.

[9] Ioanna Filippidou and Yannis Kotidis. 2015. Online and On-demand Partitioning
of Streaming Graphs. In Proceedings of the 2015 IEEE International Conference on
Big Data (Big Data). 4–13.

[10] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework.. In OSDI, Vol. 14. 599–613.

[11] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning for
Networks. In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 855–864.

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. (2017). arXiv:arXiv:1706.02216

[13] Ma hias Hauck, Marcus Paradies, and Holger Fröning. 2017. Can Modern Graph
Processing Engines Run Concurrent eries E iciently? (2017).

[14] Borislav Iordanov. 2010. HyperGraphDB: a generalized graph database. Web-Age
information management (2010), 25–36.

[15] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. ACM, 1343–1350.

[16] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-scale
graph computation on just a pc. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Vol. 8. 31–46.

[17] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Analysis
and Graph-Mining Library. ACM Trans. Intell. Syst. Technol. 8, 1 (2016), 1:1–1:20.

[18] Hang Liu, H Howie Huang, and Yang Hu. 2016. iBFS: Concurrent breadth-first
search on gpus. In Proceedings of the 2016 International Conference on Management
of Data. ACM, 403–416.

[19] Peter Macko, Daniel Margo, and Margo Seltzer. 2013. Performance introspection
of graph databases. In Proceedings of the 6th International Systems and Storage
Conference. ACM, 18.

[20] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin.
2015. GraphBIG: Understanding Graph Computing in the Context of Industrial
Solutions. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’15).

[21] Peitian Pan and Chao Li. 2017. Congra: Towards Efficient Processing of Concur-
rent Graph Queries on Shared-Memory Machines. In 2017 IEEE 35th International
Conference on Computer Design (ICCD). IEEE, 217–224.

[22] I. Robinson, J. Webber, and E. Eifrem. 2013. Graph Databases. O’Reilly Media,
Incorporated. http://books.google.com/books?id=RTvAmQEACAAJ

[23] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016. Fast and
Concurrent RDF Queries with RDMA-Based Distributed Graph Exploration.. In
OSDI. 317–332.

[24] Ben Shneiderman. 1984. Response Time and Display Rate in Human Performance
with Computers. ACM Comput. Surv. 16, 3 (1984), 265–285.

[25] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar,
Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. 2014. Goffish: A sub-
graph centric framework for large-scale graph analytics. In European Conference
on Parallel Processing. Springer, 451–462.

[26] Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien
Pham, Alfons Kemper, Thomas Neumann, and Huy T Vo. 2014. The more the mer-
rier: Efficient multi-source graph traversal. Proceedings of the VLDB Endowment
8, 4 (2014), 449–460.

[27] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From think like a vertex to think like a graph. Proceedings
of the VLDB Endowment 7, 3 (2013), 193–204.

[28] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. 2013. From think like a vertex to think like a graph. Proceedings
of the VLDB Endowment 7, 3 (2013), 193–204.

[29] Jim Webber. 2012. A programmatic introduction to neo4j. In Proceedings of the
3rd annual conference on Systems, programming, and applications: software for
humanity. ACM, 217–218.

[30] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and
Hejun Wu. 2015. Core decomposition in large temporal graphs. In IEEE Big Data.
649–658.

[31] Yinglong Xia, Ilie G. Tanase, Lifeng Nai, Wei Tan, Yanbin G. Liu, Jason Crawford,
and C-Y. Lin. 2014. Explore Efficient Data Organization for Large Scale Graph
Analytics and Storage. In IEEE Big Data. 942 – 951.

[32] Jilong Xue, Zhi Yang, Shian Hou, and Yafei Dai. 2017. Processing Concurrent
Graph Analytics with Decoupled Computation Model. IEEE Trans. Comput. 66, 5
(2017), 876–890.

[33] Jilong Xue, Zhi Yang, Zhi Qu, Shian Hou, and Yafei Dai. 2014. Seraph: an efficient,
low-cost system for concurrent graph processing. In Proceedings of the 23rd
international symposium on High-performance parallel and distributed computing.
ACM, 227–238.

[34] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric
framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981–1992.

[35] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric
framework for distributed computation on real-world graphs. Proceedings of the
VLDB Endowment 7, 14 (2014), 1981–1992.

[36] Da Yan, James Cheng, M Tamer Özsu, Fan Yang, Yi Lu, John Lui, Qizhen Zhang,
and Wilfred Ng. 2016. A general-purpose query-centric framework for querying
big graphs. Proceedings of the VLDB Endowment 9, 7 (2016), 564–575.

[37] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2016. I/O
Efficient ECC Graph Decomposition via Graph Reduction. In PVLDB. 516 – 527.

[38] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and Conquer to
Verify Forwarding Tables in Huge Networks. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation. 87–99.

[39] Wen Zhang. 2017. Knowledge Graph Embedding with Diversity of Structures. In
Proceedings of the 26th International Conference on World Wide Web Companion.
747–753.

[40] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A computation-centric distributed graph processing system. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16)(Savannah,
GA.

[41] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning..
In USENIX Annual Technical Conference. 375–386.

https://calendar.perfplanet.com/2011/how-response-times-impact-business/
https://calendar.perfplanet.com/2011/how-response-times-impact-business/
https://giraph.apache.org/
http://thinkaurelius.github.io/titan/
https://github.com/JanusGraph/janusgraph
https://github.com/JanusGraph/janusgraph
http://arxiv.org/abs/arXiv:1706.02216
http://books.google.com/books?id=RTvAmQEACAAJ

	Abstract
	1 Introduction
	2 Background
	3 System Design
	3.1 Range-based Graph Partitioning
	3.2 Multi-modal Edge-set based Graph Representations
	3.3 Query Processing
	3.4 Programming Abstraction
	3.5 Concurrent Queries Optimization

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion and Future Work
	References

