
An Edge-Set Based Large Scale Graph Processing System

Li Zhou
The Ohio State University

Columbus, OH 43210, USA
zholi@cse.ohio-state.edu

Yinglong Xia, Hui Zang
Huawei Research America

Santa Clara, CA 95050, USA
{yinglong.xia, hui.zang}@huawei.com

Jian Xu, Mingzhen Xia
Huawei Technologies, Ltd.

Shenzhen, Guangdong, China
{xujian, xiamingzhen}@huawei.com

Abstract—Next generation analytics will be all about graphs,
though performance has been a fundamental challenge for
large scale graph processing. In this paper, we present an
industrial graph processing engine for exploring various large
scale linked data, which exhibits superior performance due to
the several innovations. This engine organizes a graph as a
set of edge-sets, compatible with the traditional edge-centric
sharding for graphs, but becomes more amenable for large
scale processing. Each time only a portion of the sets are
needed for computation and the data access patterns can be
highly predictable for prefetch for many graph computing
algorithms. Due to the sparsity of large scale graph structure,
this engine differentiates logical edge-sets from the edge-sets
physically stored on the disk, where multiple logical edge-sets
can be organized into a same physical edge-set to increase the
data locality. Besides, in contrast to existing solution, the data
structures utilized for the physical edge-sets can vary from one
to another. Such heterogeneous edge-set representation explores
the best graph processing performance according to local data
access patterns. We conduct experiments on a representative set
of property graphs on multiple platforms, where the proposed
system outperform the baseline systems consistently.

Keywords-graph; parallel; prefetch; edge-set

I. INTRODUCTION

It is well known that a great variety of big data applica-
tions are naturally modeled as large scale graph analytics [1]
[2]. It is partially because the entities within many big
data applications are typically connected with each other,
where the connections form the edges of a graph of the
entities. Besides, the intuitiveness of graph-based modeling
is amenable to analysis algorithm design. This explains that
graph has been a critical component in existing big data
computing frameworks, such as Giraph in Hadoop, GraphX
in Spark, and Gelly in Flink, etc. [3] [4]

However, compared to many other big data subsystems,
the graph processing system imposes significant perfor-
mance challenges that adversely impact the adoption of the
useful technology in some big data scenarios. For example,
one of the challenges is poor data locality due to irregular
data access. Therefore, graph processing is not bounded
by the computational capability of a platform, but the IO
latency [5] [6]. This motivates some single machine solution
for relatively large scale graph processing, where both the
disk and memory resources are leveraged for processing,
such as GraphChi [7] and XStream [8]. Our system leverages

some idea in this field but achieves much better performance.
Such work paves an approach for large scale graph com-
puting; however, those solution still faces challenges that
traversal along the graph structure, such as the breadth-first
search (BFS).

Our contributions in this paper consist of: (1) a novel
edge-set based representation for large scale graph process-
ing that is naturally related to the parallel sliding window
(PSW) and is straightforward to be handled when exchang-
ing/prefetching data between memory and disk; (2) a method
to store multiple sparse edge-sets with affinity into the same
physical block, so that the data locality can be improved; (3)
an approach to incrementally update graph structure while
keeping data consistent across edge-sets; and (4) a multi-
modal representation of an edge-set to incorporate with
various graph processing algorithms.

II. EDGE-SET BASED GRAPH PROCESSING SYSTEM

A. Overview

The architecture of the proposed graph processing system
is shown in Figure 1. Basically, the edge-set generator con-
verts graph data into a set of edge-sets, each consisting of a
group of edges. Graph analysis algorithms are implemented
using the same programming model as that in GraphChi and
the scheduler will load/preload corresponding edge-sets for
processing. If modified in the edge-set modifier, the resulting
edge-set will be persisted onto the storage by the evictor.
The in-memory edge-set manager maintains the edge-sets
that are currently cached in the edge-set buffer and decides
which to evict according to an alternated LRU policy that
considers the edge-set to prefetch. The edge-set buffer hosts
the edge-sets under processing and those prefetched.

Figure 1. System architecture

B. Edge-set Representation

The edge-sets are naturally related to the parallel sliding
window (PSW) in [7], but more flexible. For example, in
Figure 2, an input graph is represented as three edge lists
known as shards, each consisting of all the edges with the
destination vertex in a certain range. We show the ranges
on top of the shards. To traverse a graph, the PSW works
in an iterative manner. The yellow zone covers the data
to be processed in the current iteration. It is worth noting
that, at the i-th step the yellow zone exactly corresponds to
the i-th row plus the i-th column of the blocked adjacency
matrix. Therefore, to traverse a graph, it is equivalent
to scan the blocked adjacency matrix top-down and left-
right simultaneously. Such regularity implies an approach to
efficiently prefetch data. Note that the graph sharding in [7]
corresponds to the vertical-only partitioning of the adjacent
matrix, which is incapable to address celebrity vertices with
extreme dense incoming edges, but such an issue does not
exist for our edge-set based approach where the matrix is
partitioned both vertically and horizontally.

Figure 2. PSW in terms of edge-sets

Since all graph algorithms can be implemented using
PSW under the gather-apply-scatter (GAS) model (or its
variants) [7] and PSW is nothing but all the edge-sets on the
same column in the blocked adjacency matrix, we conclude
that the edge-set representation of a graph is generic. To
generate the edge-sets, it is even more straightforward than
that in GraphChi where a global sorting is required. In our
case, we scan the edge list once to determine the vertex
degrees and then we divide the vertices into a set of range
by evenly distributing the degrees. Then, we scan the edge
list again and allocate each edge to an edge-set according
to the ranges where source and destination vertices fall into.
Note that both scans can be conduct in divide-and-conquer
manner. Thus, given p parallel threads, the complexity under
PRAM is given by O(m/p), where m is the number of input
edges. In contrast, GraphChi sorts all edges and then gener-

ates the shards. Given sufficient memory (i.e. a single shard
for GraphChi) the complexity is O(m logm) > O(m/p).
Note that GraphChi actually utilizes the radix sort with
complexity O(km), but theoretically k ≤ logm. In practice,
we also observed improved parallelism and performance for
our proposed approach.

C. Consolidation

The edge-set generator shown in Figure 1 can merge small
edge-sets. The sparsity nature of real large scale graph can
result in some tiny edge-sets that consist of a few edges
each, if not empty. Loading or persisting many such small
edge-sets is inefficient due to the IO latency. Therefore,
it makes sense to consolidate small edge-sets likely to be
processed together, so that we can potentially increase the
data locality. Consolidation can occur between edge-set next
to each other horizontally, vertically, or both. We consolidate
edge-sets using the following heuristic method. For the sake
of simplicity, we look at the horizontal consolidation only.
First, we determine a bound B for the merged set as follows:
let k denote the page size of the platform, in term of the
number of bytes, and s the size of an edge, then the bound is
given by dks e, which ensures that the resulting set is aligned
with the system page, leading to improved IO efficiency.
Second, for each edge-set si,j smaller than the bound, i.e.
|si,j | < B, where i, j are the indices of the edge-set in
the corresponding adjacency matrix with N ∗ N blocks, it
identifies its horizontal neighbor that minimizes the size of
the resulting set if merged:

s̃ = min
j′∈{j−1,j+1},0<j<N

(|si,j |+ |si,j′ |)

If s̃ < B, it proposes to merge with the selected neighbor. If
two edge-sets select each other, then they are merged. The
neighbors of the merged set are the union of the neighbors
of the two. We continue the consolidation process repeatedly
until no merge occurs anymore. In Figure 3, we merge the
neighbor sets as long as the size of the merged set is no
more than the given bound, say 4 edges. As a result, edge-
sets 1, 2, and 3 are consolidated. Similarly, edge-sets 4 and
5 are merged, and also 8 and 9.

The horizontal consolidation improves data locality espe-
cially when we visit the out-going edges of vertices. We
can also merge the edge-sets vertically, which benefits the
information gathering from the parents of a vertex. Note
that if all the edge-sets in a row (column) are merged, it is
equivalent to have the out-going (in-coming) edge list of the
vertex. Note that the edge-set consolidation is transparent
to users, that is, the users will still see 9 edge-sets when
implementing graph algorithms; but physically there are only
5 edge-sets physically stored on disk. The proposed system
maintains the mapping between the logical edge-sets and the
physical edge-sets. Once a logical edge-set is prefetched, the
system is aware that all logical edge-sets co-existing in the

Figure 3. Horizontal consolidation of logical edge-set to improve data
locality

same physical edge-set become available in memory, which
are likely being processed immediately. Thus, the temporal
data locality is improved.

D. Multi-modal Organization

We allow multi-modal data organization for the edge-sets,
because of the impact of organization formats on particular
graph computing algorithms. We take two formats as an
example: The coordinate format (a.k.a. COO) in our context
is simply a list of edges, each having a source vertex ID, a
destination vertex ID, and some attribute on the edge; while
the compressed sparse row (CSR) in our context sorts COO
according to the source vertices and then compresses the
list by eliminating the repeated source vertices. Both can
be found in literature of sparse matrices and graphs. The
impact of COO and CSR on performance varies according
to the graph processing algorithms. Specifically, for the same
input graph, we observed better performance for performing
PageRank using COO than CSR, although CSR helps the IO
a little bit due to the compression. However, for performing
breadth-first search (BFS), CSR shows higher noticeable
advantage. The reason is that the CSR allows us to locate a
vertex quickly as it is sorted; while for COO we have to filter
the edge-set when seeking a particular vertex. Although due
to high sparsity, COO may help save the memory required
to present a graph than CSR where each vertex has a pointer.
Note that in PageRank we visit all the edges in each iteration
of the algorithm, regardless the order of the edges; while
in BFS, we must follow the graph topology to visit the
neighbors of the vertices visited in the last iteration.

E. Scheduling and Prefetching

The scheduler shown in Figure 1 applies the user-defined
vertex program to the graph and coordinates with the in-
memory edge-set manager. The manager maintains buffer of
edge-sets. The scheduler notifies the manager which edge-
sets will be processed, according to the data access pattern
discussed in Section II-B, and the edge-set manager informs
the prefetch component to load those edge-sets, as long as
the buffer is not full. In the meanwhile, the evictor dumps the
edge-set that are least recently used. The edge-set modifier
update edges and/or its property. Note that the scheduler is
aware of the spatial/temporal data locality. If an edge-set is
already loaded, it won’t be load again.

Name Vertices Edges
Kronecker (22) 4.1M 34.1M
Kronecker (24) 16.7M 165.2M
Kronecker (26) 67.1M 799.8M
LDBC-1000K 1M 28.8M
Twitter-2010 41.7M 1.4B

Table I
DATASETSS DESCRIPTION

III. EXPERIMENT

We preliminarily evaluated our system on two platforms:
One is a Mac Mini with a dual-core 3 GHz Intel i7
processor, 16 GB memory, and 1 TB HDD. The other
is a Dell Precision Tower with 8-core 3.4 GHz Intel i7
processor, 64 GB memory, and 1 TB HDD. The OSs
are Mac OS X and Ubuntu 14.04 LTS, respectively. Both
synthetic and real datasets were utilized (see Table I).
The three Kronecker graphs were generated with the seed
matrix [0.9, 0.6; 0.6, 0.1] and numbers of iteration are 22,
24, and 26, respectively. One of the workloads was the
PSW-based graph traversal for 10 times. Note that such
workload is equivalent to perform PageRank on the graph
for 10 iterations [7]. We took GraphChi [7] as a baseline
and implemented the above workload in both the baseline
system and our proposed system. In addition to PageRank,
we also implemented BFS and single-source-shortest-path
(SSSP) in GraphChi and compared its performance with that
of our system. Note that BFS and SSSP have very different
characteristics compared to PageRank in terms of graph data
access behaviors.

A. Evaluated Workloads

We observed highly promising performance improvement
against our baseline methods in our preliminary experiments.
In Figure 4, we illustrate the execution time of our workload
against GraphChi. The efficiency improvement was quite
significant, approximately 3.6x ∼ 10.4x faster. We achieved
such speedups because 1) our system eliminates vertex-
centric graph reconstruction in GraphChi that results in
significant memory allocation and release repeatedly; 2)
our system explores data parallelism in an edge-set by
processing multiple vertices simultaneously.

Our system achieved 10% ∼ 30% performance improve-
ment over GraphChi on the preprocessing phase, primarily
because our system requires no global sorting. To combine
the preprocessing and the workload of 10 PSW-based traver-
sal, we achieve 1.5x ∼ 3.4x overall speedup as shown in
Figure 5.

We also implemented PSW-based BFS and SSSP in
GraphChi and compared with our system. In Figure 6, we
illustrate the execution time of PSW-basded BFS against
GraphChi. The root nodes were randomly chosen, and av-
erage execution time was used to compare the performance.

Figure 4. Performance improvement of PageRank against GraphChi.

Figure 5. Performance improvement of PageRank against GraphChi
including preprocessing.

When the input dataset is small enough to fit into the
memory, GraphChi shows similar performance with our
system. This is because the IO time dominated the execution
phase while the graph reconstruction time was relatively
small. In addition, it is natural to traverse the graph under
vertex-centric model after reconstructing the whole graph in
memory. Our system shows potentials with large graphs, it
presented up to 5x faster execution with increasing input
dataset size. Such speedups of our system are mainly from
eliminating graph reconstruction overhead in GraphChi. The
data parallelism was also improved by processing multiple
verticse simultaneously when accessing each edge-set. To
combine the preprocessing and the workload of PSW-based
BFS, we achieve 1x ∼ 1.8x overall speedup as shown in
Figure 7.

In Figure 8, we illustrate the execution time of PSW-
based SSSP against GraphChi. We implemented Bellman-
Ford algorithm which computes the the shortest paths from a
single source vertex to all of the other vertices in a weigeted
graph. It traverse all the edges |V|-1 times where |V| is the
number of vertices in the graph, or ends when no vertices
distance are changed since last iteration. The source vertices
were randomly chosen, and the average execution time were
calculated and compared with GraphChi. The efficiency
improvement was quite significant, approximately 3.7x ∼

Figure 6. Performance improvement of BFS against GraphChi.

Figure 7. Performance improvement of BFS against GraphChi including
preprocessing.

16.2x faster over the baseline. The speedups vary since the
iterations required to end may vary with different source
vertices. To combine the preprocessing and the workload of
PSW-based SSSP, we achieve 1.5x ∼ 2.9x overall speedup
as shown in Figure 9.

Figure 8. Performance improvement of SSSP against GraphChi.

In Table II, we illustrate the total time breakdown for
the workloads. Our system outperform GraphChi for all
the preprocessing, load and reconstruction (which is not
required in our system), and computation phases. Note that
the experiments for BFS and SSSP randomly chose source
vertices and presented the average time. Both GraphChi and

Figure 9. Performance improvement of SSSP against GraphChi including
preprocessing.

App. Prep. Load+Reconstr. Comp.

GraphChi
PageRank 1184.64 2535.76 1030.76

BFS 958.991 197.6692 82.5688
SSSP 966.342 217.1342 82.9308

Edge-Set
PageRank 786.199 431.693 557.81

BFS 703.41 46.1713 11.7145
SSSP 712.216 41.5668 25.1802

Table II
TOTAL TIME BREAKDOWN RUNNING TWITTER-2010 BY GRAPHCHI

AND EDGE-SET.

our system require preprocessing to generate shards or edge-
sets, which is a one-time task given a constant graph.

B. Scalability and Performance

We conducted preliminary experiments to evaluate the
impact of edge-set prefetch (Section II-E), consolidation
(Section II-C), and the edge-set organization (Section II-D).
We noticed that a larger buffer size usually results in
higher performance improvement. The prefetch contributed
up to 6% of the overall execution time improvement in our
observation. We evaluated the edge-set consolidation with
various upper bounds of the physical edge-set size using the
three Kronecker graphs. The results are shown in Table III.
Figure 10 presents the comparison of the execution time
(including preprocessing) on Kronecker (26) between two
graph representative formats COO and CSR. COO showed
improved performance for the PSW-based workload since
PSW visits all (active) edges (see Figure 10). Note that
CSR shows advantages for BFS-like traversals since it is
essentially an indexed COO (with compression) that helps
in locating a specific vertex, however it may require more
memory than COO in a highly sparse graph which degrades
the IO efficiency and load balance issue also should be
considered when using CSR. In overall, COO format obtains
8.4x speedup on execution time over CSR and 2.9x if the
preprocessing is considered.

In Figure 11, we illustrate the scalability of our system.
The execution time was normalized to 2 cpus GraphChi,

Dataset Performance Improvement
Kronecker (22) 4.8% ∼ 9.3 %
Kronecker (24) 3.2% ∼ 9.2 %
Kronecker (26) 2.8% ∼ 8.6 %

Table III
IMPACT OF EDGE-SET CONSOLIDATION

Figure 10. Left: Execution time breakdown on Pagerank running twitter-
2010. Right: Impact on edge-set multi-modal organization on performance
(COO vs. CSR).

and presented the scalability of both load/reconstruction
and computation time. GraphChis performance is limited
by the IO bandwidth and graph reconstruction. Increasing
the number of cores can improve the graph load and
reconstruction, but benefit for computation gained from
parallelism is small. Our system utilizes the data parallelism
by processing multiple vertices simultaneously in a edge-
set. It shows better scalability on computation time with
increasing number of cores. This experiment started with
two-core since our system was optimized for multicore
system, and was compared up to four-core to present a fair
comparison since GraphChi targeted on four-core Mac PC.
We noticed that for application like BFS, GraphChi showed
similar or better computation time with small size graphs.
It is because tremendous time was spent to reconstruct
the graph into vertex-centric model. However our system
still presented better overall performance by eliminating the
graph reconstruction and utilizing data parallelism in a edge-
set. Our 2-cpu system achieved 2.0x ∼ 3.3x overall speedup
over 4-cpu GraphChi.

Our system exhibited higher IO efficiency than the base-
line. In Figure 12, we presented the disk read bandwidth
regarding twitter-2010 over time. Our system showed im-
proved bandwidth usage clearly, up to 2x aggregate band-
width. GraphChi has disruptive IO efficiency due to the long
latency of graph re-construction. This observation explained
the high speedup of our system in the experiments.

IV. CONCLUSION AND FUTURE WORK

We presented our undergoing project on a highly efficient
graph processing engine. The preliminary experiments show

Figure 11. Relative runtime when varying the number of threads used by
GraphChi and Edge-Set. Experiment was done on a Linux machines with
four cores.

Figure 12. Disk read bandwidth over total run time by GraphChi and Edge-
Set. Edge-Set showed up to 2x aggregate bandwidth and more constant IO
usage.

highly promising results, such as over 10x speedup on
traversing a graph using parallel sliding window. As an
industrial system, the performance improvement are due to
several factors, including the edge-set representation with
multi-modality, the data prefetch, and consolidation. In
future, we will fully evaluate our system and extend the
system onto distributed computing environment to address
extremely large scale graphs.

REFERENCES

[1] J. Leskovec and R. Sosič, “SNAP: A general-purpose network
analysis and graph-mining library,” ACM Trans. Intell. Syst.
Technol., vol. 8, no. 1, pp. 1:1–1:20, 2016.

[2] K. Duraisamy, H. Lu, P. P. Pande, and A. Kalyanaraman,
“High-performance and energy-efficient network-on-chip ar-
chitectures for graph analytics,” ACM Trans. Embed. Comput.
Syst., vol. 15, no. 4, pp. 66:1–66:26, 2016.

[3] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “I/O efficient
ECC graph decomposition via graph reduction,” in PVLDB,
2016, pp. 516 – 527.

[4] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu,
“Core decomposition in large temporal graphs,” in IEEE Big
Data, 2015, pp. 649–658.

[5] Y. Xia, I. G. Tanase, L. Nai, W. Tan, Y. G. Liu, J. Crawford,
and C.-Y. Lin, “Explore efficient data organization for large
scale graph analytics and storage,” in IEEE Big Data, 2014,
pp. 942 – 951.

[6] I. Filippidou and Y. Kotidis, “Online and on-demand partition-
ing of streaming graphs,” in Proceedings of the 2015 IEEE
International Conference on Big Data (Big Data), 2015, pp.
4–13.

[7] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-
scale graph computation on just a pc,” in Proceedings of the
10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), vol. 8, 2012, pp. 31–46.

[8] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: edge-
centric graph processing using streaming partitions,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 472–488.

