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SYSTEM FOR HANDLING CONCURRENT response times for k - hop reachability queries in distributed 
PROPERTY GRAPH QUERIES environments . Typically , a property graph includes direc 

tional axes and attributes ( properties ) of a user ( e.g. , the 
CROSS - REFERENCE TO RELATED user's name ) , data relationships , and the like . The system 

APPLICATION 5 and method described herein is related to an edge - set based 
graph traversal framework called C - Graph ( i.e. , Concurrent 

This application is a continuation application of and Graph ) that runs on a distributed infrastructure and achieves 
claims priority to International Application No. PCT / both high concurrency and efficiency for k - hop reachability 
US2019 / 035805 , filed 6 Jun . 2019 , entitled “ System for queries . The systems and methods described herein may be 
Handling Concurrent Property Graph Queries , ” which 10 implemented via graph processing software that is executed 
claims priority to U.S. Provisional Application Ser . No. by one or more processors in a distributed processing system 
62 / 685,555 , filed 15 Jun . 2018 , entitled “ Methodology and that supports concurrent queries of the property graph . 
System for Handling Concurrent Property Graph Queries , ” In sample embodiments , the system described herein is 
the contents of each of which are hereby incorporated by designed to meet the industrial requirements of efficiently 
reference in their entirety . 15 handling a group of simultaneous graph queries on large 

graphs , rather than accelerating a single graph processing 
TECHNICAL FIELD task exclusively on a server / cluster as in conventional sys 

tems . Such concurrency is needed as it is very common to 
The present disclosure is related to an edge - set based have many users concurrently access a graph , using different 

property graph traversal framework that runs on a distrib- 20 queries , especially for cloud services . Also , in many sce 
uted infrastructure . narios , the graph size becomes increasingly large , resulting 

in significant overhead in duplicating a graph instance . In 
BACKGROUND addition , generating too many instances results in challenges 

in efficient data consistency across the instances . As a result , 
Many big data analytics applications explore a set of 25 it is important to support concurrent queries within each 

related entities , which are naturally modeled as graph . instance to avoid too much data duplication . Also , updates 
However , graph processing is notorious for its performance should be across instances with increased concurrency 
challenges due to random data access patterns , especially for within each instance . To achieve these goals , the C - Graph 
large data volumes in industrial - scale applications . Solving traversal framework described herein maintains global ver 
these challenges is critical to the performance of such 30 tex states to facilitate graph traversals and supports both 
industry - scale applications . synchronous and asynchronous communication interfaces . 
Graph processing has been widely adopted in big data For any graph processing tasks that can be decomposed into 

analytics and plays an increasingly important role in knowl- a set of local traversals , such as the graph k - hop reachability 
edge graph and machine learning applications . Many real- query , such an approach exhibits excellent performance 
world scenarios such as social networks , web graphs , wire- 35 relative to conventional systems . 
less network , etc. , are naturally represented as large scale A first aspect of the present disclosure relates to a graph 
graphs . Modeling applications as graphs provides an intui- processing system that provides for concurrent property 
tive representation that allows exploration and extraction of graph queries of a property graph where the property graph 
valuable information from data . For example , in recommen- is implemented in a distributed network of nodes . The graph 
dation systems , information about neighbors is analyzed to 40 processing system includes at least one processor and a 
predict the user's interests and to improve click - through rate . machine - readable medium comprising instructions thereon 
High performance graph processing also benefits a wealth of that , when executed by the at least one processor , causes the 
important algorithms . For instance , mapping applications at least one processor to perform operations including deter 
make extensive use of shortest path graph traversal algo- mining on a node of a plurality of nodes within the distrib 
rithms for navigation . To effectively manage and process 45 uted network of nodes a subgraph shard of a plurality of 
graphs , graph databases such as JanusGraph® , Neo4j® , and subgraph shards of the property graph , the node storing data 
others have been developed . Graph processing frameworks for the subgraph shard that contains a range of local vertices 
are also commonly found as critical components in many big that are a subset of all vertices of the property graph , the 
data computing platforms , such as GiraphTM in Hadoop , subgraph shard having boundary vertices that have edges 
GraphX® in SparkTM , GellyTM in Flink® , etc. However , 50 that connect the subgraph shard to boundary vertices of 
such graph processing systems typically focus on acceler- another subgraph shard . The operations further include 
ating a single graph processing task and do not consider converting the subgraph shard into a set of edge - sets con 
multiple graph processing tasks running concurrently , such taining vertices within a certain range by vertex identifier , 
as a group of queries issued simultaneously to the same receiving concurrent queries of the property graph from at 
graph , as required for industrial - scale applications in real- 55 least one user , scheduling a query of the subgraph shard of 
world scenarios . the plurality of subgraph shards in accordance with an initial 

vertex for each concurrent user query , and traversing the 
SUMMARY property graph during execution of the concurrent queries by 

traversing edge - sets within the subgraph shard . In the 
Various examples are now described to introduce a selec- 60 sample embodiments , the node sends values of boundary 

tion of concepts in a simplified form that are further vertices of the subgraph shard to at least one other node 
described below in the Detailed Description . This Summary having another subgraph shard s sharing the boundary 
is not intended to identify key or essential features of the vertices using messaging during traversal of the property 
claimed subject matter , nor is it intended to be used to limit graph . 
the scope of the claimed subject matter . In a first implementation according to the first aspect as 
A graph processing system is desired that can support such , each subgraph shard on each node comprises two bit 

concurrent property graph queries to improve average arrays : a first array for marking a list of adjacent vertices to 

65 
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visit in a next iteration of traversal of the subgraph shard and to different subgraph shards based on vertex identifier and to 
a second array for verifying vertices in the subgraph shard assign all out - going edges of a vertex to a same subgraph 
that already have been visited . The first array and second shard . 
array have a size N by k , where N is a number of vertices A second aspect of the present disclosure relates to a 
in the subgraph shard and k is a number of concurrent user 5 method for concurrently querying a property graph imple 
queries . mented in a distributed network of nodes . The method 

In a second implementation according to the first aspect or includes determining on a node of a plurality of nodes within 
any preceding implementation of the first aspect , traversing the distributed network of nodes a subgraph shard of a 
the property graph further comprises finding unvisited plurality of subgraph shards of the property graph . The node 
neighbor nodes in the edge - sets and populating the unvisited 10 stores data for the subgraph shard that contains a range of local vertices that are a subset of all vertices of the property neighbor nodes into the first array , visiting the unvisited graph . The subgraph shard has boundary vertices that have neighbor nodes and checking for unvisited neighbor nodes , edges that connect the subgraph shard to boundary vertices and repeating the visiting and checking for different nodes of another subgraph shard , and the subgraph shard com including at least one of the plurality of subgraph shards . 15 prises a set of edge - sets containing vertices within a certain In a third implementation according to the first aspect or range by vertex identifier . The method further includes any preceding implementation of the first aspect , the node receiving concurrent queries of the property graph from at 
provides to the subgraph shard on the node an inbox for least one user , scheduling a query of the subgraph shard of 
receiving messages from a neighbor subgraph shard and an the plurality of subgraph shards in accordance with an initial 
outbox for providing messages to the neighbor subgraph 20 vertex for each concurrent user query , traversing the prop 
shard when the neighbor subgraph shard is located on erty graph during execution of the concurrent queries by 
another node in the distributed network of nodes . traversing edge - sets within the subgraph shard , and the node 

In a fourth implementation according to the first aspect or sending values of boundary vertices of the subgraph shard to 
any preceding implementation of the first aspect , the at least one other node having another subgraph shard 
machine - readable medium further comprises instructions 25 sharing the boundary vertices using messaging during tra 
that , when executed by the at least one processor , causes the versal of the property graph . 
at least one processor to traverse the property graph during In a first implementation according to the second aspect as 
execution of the concurrent queries by starting from each such , traversing the property graph further comprises finding 
root and propagating a unique label to each neighbor vertex unvisited neighbor nodes in the edge - sets and populating the 
to mark traversed edges in an edge - set of the subgraph shard 30 unvisited neighbor nodes into a first array for marking a list 
and by using the inbox and outbox to buffer the unique labels of adjacent vertices to visit in a next iteration of traversal of 
sent to and received from the neighbor subgraph shard on the the subgraph shard , visiting the unvisited neighbor nodes 

and checking for unvisited neighbor des , and repeating another node in the distributed network of nodes . the visiting and checking for different nodes including at In a fifth implementation according to the first aspect or 35 least one of the plurality of subgraph shards . any preceding implementation of the first aspect , the In a second implementation according to the second machine - readable medium further comprises instructions aspect or any preceding implementation of the second 
that , when executed by the at least one processor , causes the aspect , traversing the property graph further comprises 
at least one processor to optimize respective edge - sets for keeping a record of vertices in the subgraph shard that 
sparsity and cache locality . 40 already have been visited in a second array , the first array 

In a sixth implementation according to the first aspect or and second array having a size N by k , where N is a number 
any preceding implementation of the first aspect , traversing of vertices in the subgraph shard and k is a number of 
the property graph comprises traversing ( 1 ) shared neighbor concurrent user queries . 
vertices of adjacent vertices to visit in a next iteration of In a third implementation according to the second aspect 
traversal of the subgraph shard within an edge - set and ( 2 ) 45 or any preceding implementation of the second aspect , 
shared vertices among concurrent queries only one time for traversing the property graph further comprises providing 
the concurrent queries . messages to an outbox destined for a neighbor node on a 

In a seventh implementation according to the first aspect neighbor subgraph shard when the neighbor subgraph shard 
or any preceding implementation of the first aspect , travers- is located on another node in the distributed network of 
ing the property graph comprises eliminating repeated tra- 50 nodes . 
versals of the property graph for a set of queries according In a fourth implementation according to the second aspect 
to the shared neighbor vertices of adjacent vertices and or any preceding implementation of the second aspect , 
shared vertices among concurrent queries within the edge- traversing the property graph further comprises starting from 
set , wherein the edge - set is accessed once and data there- each root specified by the query and propagating a unique 
from is cached for re - use . 55 label to each neighbor vertex to mark traversed edges in an 

In an eighth implementation according to the first aspect edge - set of the subgraph shard and buffering the unique 
or any preceding implementation of the first aspect , the labels to send to and receive from the neighbor subgraph 
machine - readable medium further comprises instructions shard on the another node in the distributed network of 
that , when executed by the at least one processor , causes the nodes . 
at least one processor to utilize dynamic resource allocation 60 In a fifth implementation according to the second aspect 
during traversals of the property graph and to store values or any preceding implementation of the second aspect , the 
for a previous and a current level of the property graph . method further comprises optimizing respective edge - sets 

In a ninth implementation according to the first aspect or for sparsity and cache locality . 
any preceding implementation of the first aspect , the In a sixth implementation according to the second aspect 
machine - readable medium further comprises instructions 65 or any preceding implementation of the second aspect , 
that , when executed by the at least one processor , causes the traversing the property graph further comprises traversing 
at least one processor to assign vertices of the property graph ( 1 ) shared neighbor vertices of adjacent vertices to visit in a 
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next iteration of traversal of the subgraph shard within an graph partitions , with each partition converted into 8 edge 
edge - set and ( 2 ) shared vertices among concurrent queries sets whereby traversing the graph through out - going edges 
only one time for the concurrent queries . is equivalent to scanning the edge - sets in left - right pattern . 

In a seventh implementation according to the second FIG . 3B illustrates a graph for affinity - a 1 - aware traversal of 
aspect or any preceding implementation of the second 5 trees for two concurrent queries where the first three levels 
aspect , traversing the property graph further comprises are illustrated . 
eliminating repeated traversals of the property graph for a FIG . 4 illustrates a graph query workflow in a sample 
set of concurrent queries according to the shared neighbor embodiment . 
vertices of adjacent vertices and shared vertices among FIG . 5 illustrates a simple , two - partition graph example 
concurrent queries within the edge - set , accessing the edge- 10 with four concurrent graph traversals starting from all four 
set once , and caching data therefrom for re - use . vertices where different queries are distinguished using 

In an eighth implementation according to the second different symbols , each partition has an inbox buffer for 
aspect or any preceding implementation of the second incoming tasks and an outbox buffer for outgoing tasks , and 
aspect , the method further comprises utilizing dynamic each task is associated with the destination vertex's unique 
resource allocation during traversals of the property graph to 15 ID . 
store values for a previous and a current level of the property FIG . 6A is an example graph of bit operations for two 
graph . concurrent queries . 
A third aspect of the present disclosure relates to a FIG . 6B illustrates two concurrent graph traversal queries 

non - transitory computer - readable medium storing computer based on the example graph of FIG . 6A . 
instructions for concurrently querying a property graph 20 FIG . 6C illustrates a frontier and visited bit array at each 
implemented in a distributed network of nodes , that when hop of the example graph of FIG . 6A . 
executed by one or more processors , cause the one or more FIG . 7 illustrates a summary of the workflow that pro 
processors to perform the steps of : determining on a node of vides affinity aware traversal of a graph , con urrent frontier 
a plurality of nodes within the distributed network of nodes sync - up , and stateful frontier representation in sample 
a subgraph shard of a plurality of subgraph shards of the 25 embodiments . 
property graph , the node storing data for the subgraph shard FIG . 8A illustrates a flow chart of a graph processing 
that contains a range of local vertices that are a subset of all system of a sample embodiment . 
vertices of the property graph , the subgraph shard having FIG . 8B illustrates the traversal of the subgraphs as 
boundary vertices that have edges that connect the subgraph implemented in a sample embodiment . 
shard to boundary vertices of another subgraph shard , the 30 FIG . 9 illustrates a single machine performance compari 
subgraph shard comprising a set of edge - sets containing son of 100 concurrent 3 - hop queries of the C - Graph system 
vertices within a certain range by vertex identifier ; receiving described herein with a Titan system running an OR - 100M 
concurrent queries of the property graph from at least one graph . 
user ; scheduling a query of the subgraph shard of the FIG . 10A illustrates a response time distribution compari 
plurality of subgraph shards in accordance with an initial 35 son of 100 concurrent 3 - hop queries of the C - Graph system 
vertex for each concurrent user query ; traversing the prop- described herein with a Titan system running an OR - 100M 
erty graph during execution of the concurrent queries by graph on a single machine . 
traversing edge - sets within the subgraph shard ; and the node FIG . 10B illustrates a response time distribution compari 
sending values of boundary vertices of the subgraph shard to son of the C - Graph system described herein with a Gemini 
at least one other node having another subgraph shard 40 system running a Friendster ( FR - 1B ) graph on three 
sharing the boundary vertices using messaging during tra- machines . 
versal of the property graph . FIG . 11 illustrates the data size scalability results of 

The methods described herein can be performed and the response times for 100 concurrent 3 - hop queries . 
instructions on computer readable media may be processed FIG . 12 illustrates multi - machine scalability results for 
by the apparatus , and further features of the method and 45 PageRank . 
instructions on the computer readable media result from the FIGS . 13A - 13D illustrate the multi - machine scalability 
functionality of the apparatus . Also , the explanations pro- results for 100 queries with FR - 1B graph for 1 machine 
vided for each aspect and its implementation apply equally ( FIG . 13A ) , 3 machines ( FIG . 13B ) , 6 machines ( FIG . 13C ) , 
to the other aspects and the corresponding implementations . and 9 machines ( FIG . 13D ) . 
The different embodiments may be implemented in hard- 50 FIGS . 14A - 14D illustrate the 3 - hop query count scalabil 
ware , software , or any combination thereof . Also , any one of ity results for a FRS - 100B graph for 20 queries ( FIG . 14A ) , 
the foregoing examples may be combined with any one or 50 queries ( FIG . 14B ) , 100 queries ( FIG . 14C ) , and 350 
more of the other foregoing examples to create a new queries ( FIG . 14D ) . 
embodiment within the scope of the present disclosure . FIG . 15 illustrates a performance comparison of concur 

55 rent BFS queries using the C - Graph system described herein 
BRIEF DESCRIPTION OF THE DRAWINGS and a Gemini system running a FR - 1B graph on three 

machines . 
In the drawings , which are not necessarily drawn to scale , FIG . 16 illustrates a block diagram of example computer 

like numerals may describe similar components in different processing resources for implementation of one or more 
views . The drawings illustrate generally , by way of example , 60 sample embodiments . 
but not by way of limitation , various embodiments discussed 
in the present document . DETAILED DESCRIPTION 
FIG . 1 illustrates a hop plot for Slashdot Zoo graphs . 
FIG . 2 illustrates an edge - centric sharding - based graph It should be understood at the outset that although an 

processing system design . 65 illustrative implementation of one or more embodiments are 
FIG . 3A illustrates a global adjacency matrix of an provided below , the disclosed systems and / or methods 

edge - set based graphic representation divided into two sub- described with respect to FIGS . 1-16 may be implemented 
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using any number of techniques , whether currently known to irregular data access patterns in many graph problems . As 
or in existence . The disclosure should in no way be limited a result , graph processing is typically bound by a platform's 
to the illustrative implementations , drawings , and tech- 1/0 latency , rather than its compute throughput . In distrib 
niques illustrated below , including the example designs and uted systems , the overheads of communication beyond 
implementations illustrated and described herein , but may 5 machine boundaries , such as network latency , exacerbate 
be modified within the scope of the appended claims along I / O bottlenecks faced by graph processing systems . 
with their full scope of equivalents . Another challenge for most existing graph processing 
Overview 
Many existing graph processing systems focus on paral frameworks is to efficiently handle concurrent queries . 

lelism to maximize the efficiency of the execution of a single 10 formance or reduce I / O overhead but are not capable of These systems are often optimized to either improve per 
query or algorithm execution . Concurrency is thus needed to responding to concurrent queries . In enterprise applications , support a number of users simultaneously accessing the 
graph , which results in resource competition with parallel a system usually has to gracefully handle multiple queries at 
execution of each individual query . The support of concur the same time . Also , since multi - user setups are common , 
rent queries is a requirement for most industrial systems , 15 several users can send out query requests simultaneously . 
particularly for cloud - based systems . Concurrency can occur Graph databases are often designed with concurrency in 
amongst random queries and analytic queries , where the mind , but they generally have poor performance in graph 
former touches usually a small part of a graph , while the analysis , especially in terms of handling large scale graphs 
latter usually touches the entire graph . In practice , there is no or high volumes of concurrent queries . 
way to clearly distinguish the two and , accordingly , both 20 Prior systems that support concurrent queries usually 
analytic and random queries should be well supported . Also , evaluate only small graphs and do not support interactive 
the graph size is typically quite large , and the graph must be multi - user distributed environments . Such systems also do 
updated in time or periodically , thereby necessitating con- not provide communications across graph partitions and do 
currency support for each graph instance . The graph pro- not use inboxes and outboxes for storing the messages 
cessing system described herein is thus designed to provide 25 across partitions during concurrent traversals . Existing sys 
efficient concurrency support for cloud applications . tems also do not provide affinity aware traversal of a 

Industrial graph processing systems often traverse property graph for concurrent queries and a stateful frontier 
extremely large graphs . Despite of the ease of centralized representation for respective nodes . 
processing , centralized processing is not practical for indus- In sample embodiments , the graph processing system that 
trial applications as a machine with a sufficiently large 30 meets these requirements implements an edge - set based 
shared memory is prohibitively expensive due to the graph traversal framework called C - Graph ( Concurrent 
extremely high cost of super computers . The graph process- Graph ) that runs on a distributed infrastructure . The system 
ing system described herein is thus assumed have a reduces overall execution time by leveraging the repeated 
distributed computing mode in its kernel design . and collocated vertices during traversals to implement affin 
One of the fundamental operations that a graph processing 35 ity - aware local graph traversal that improves the spatial data 

system must handle efficiently is the graph traversal . For locality ( two vertices in the same edge - set ) and the temporal 
example , the “ reachability query ” is essentially a graph data locality ( vertices shared between queries ) . Communi 
traversal to search for a possible path between two given cations across graph partitions are used to support the 
vertices in a graph . Graph queries are often associated with distributed infrastructure . An inbox and an outbox are pro 
constraints such as a mandatory set of vertices and / or edges 40 vided for each subgraph to store the messages across parti 
to visit , or a maximum number of hops to reach a destina- tions . Each query also propagates a unique label to mark the 
tion . In weighted graphs , such as those used in modeling traversed edges in an edge - set of the subgraph shard . When 
software - defined - networks ( SDNs ) , a path query must be a neighbor is remote , it provides messages to the outbox or 
subject to some distance constraint in order to meet quality- decodes messages from the inbox . Two - bit arrays are used to 
of - service latency requirements . 45 represent the local vertices falling into respective partitions 
Many real - world applications rely on k - hop , a variant of ( frontiers ) and those that have already been visited . The 

the classic reachability query problem . In k - hop , the distance messages sent between the partitions help to determine in 
from a given node often indicates the level of influence . For the next iteration of graph traversal if a vertex has been 
example , in wireless , sensor or social networks , the signal / visited or not . 
influence of a node degrades with distance . The potential 50 One or more embodiments described herein process con 
candidate of interest is often found within a small number of current local graph traversal tasks such as those in the k - hop 
hops . Real - world networks are generally tightly connected , reachability query . As both disk I / O and network 1/0 as 
making k - hop queries very relevant . According to the " six elements of the storage bandwidth are considered , the effi 
degrees of separation ” principle , which claims that a maxi- ciency of each processing unit is improved . The C - Graph 
mum of six steps are needed to connect any two people , most 55 framework described herein is designed as a traditional 
of the network will be visited within a small number of hops . edge - centric sharding - based graph processing system . The 
As a result , k - hop reachability often exists as an intermediate main contributions of the C - Graph framework can be sum 
“ operator " between low - level database and high - level algo- marized as follows : 
rithms . Many higher - level analyses can be described and A simple range - based partition is adopted to reduce the 
implemented in terms of k - hop queries , such as triangle 60 overhead of complex partitioning scheme for large 
counting which is equivalent to finding vertices that are scale graphs . Multi - mode , edge - set - based graph data 
within 1 and 2 - hop neighbors of the same vertex . Therefore , structures optimized for sparsity and cache locality are 
a graph processing system's ability to handle k - hop access used in each partition to achieve the best performance 
patterns predicts its performance on higher - level analyses . for different access patterns . 

Compared to many big data systems , graph processing 65 The C - Graph framework explores data locality between 
generally faces significant performance challenges . One overlapped subgraphs and utilizes bitwise operations 
such challenge for graph traversals is poor data locality due and shared global states for efficient graph traversals . 
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In order to solve the memory limitation of concurrent databases like Neo4j® are not distributed and cannot , as a 
graph queries in a single instance , dynamic resource result , support many real - world graphs such as web - scale 
allocation during graph traversals are utilized . Instead graphs partitioned over multiple machines . 
of saving a value per each vertex , only values for the High memory footprint is another challenge for large 
previous and current levels are stored . 5 scale graph processing . Concurrent graph queries , generally 

Synchronous / asynchronous update models are supported have high memory usage , which can significantly degrade 
for different types of graph applications , such as graph the response times for all queries . As a result , most of the traversals and iterative computation ( e.g. , PageRank ) . graph processing systems cannot be easily changed to run The C - Graph system targets the reduction of the average 
response times for concurrent graph queries on large- 10 mized for certain applications with high resources utiliza concurrent queries . These systems are usually highly opti 
scale graphs with up to 100 billion edges in distributed tion , but system failures may be triggered when running environments . concurrent queries due to memory exhaustion . Graph Traversal 

A graph is denoted by G = ( V , E ) , where V is a set of Range - Based Graph Partitioning 
vertices and E is a set of edges connecting the vertices ; an 15 FIG . 2 illustrates an overview of the C - Graph edge - centric 
edge e = { s , t , w } EE is a directed link from vertex s to t , with sharding - based graph processing framework 200 running on 
weight w for a weighted graph . Note that in graph database a cluster of computing nodes 210 connected by a high - speed 
terminology the weight w can also be referred to as the network 220. Each node 210 includes a processing unit 230 
property of edge e . with a cached subgraph shard 240. The processing units 230 

Graph traversal is the process of visiting a graph by 20 are CPUs in the framework 200 and can be extended to 
starting from a given source vertex ( a.k.a. the root ) and then GPUs or any other graph processing accelerators . Each 
following the adjacency edges in certain patterns to visit the subgraph shard 240 contains a range of vertices called local 
reachable neighborhood iteratively . Examples of basic graph vertices , which are a subset of all graph vertices . Boundary 
traversal methods include visiting a graph in breadth - first- vertices with respect to a subgraph shard 240 are vertices 
search ( BFS ) and / or depth - first - search ( DFS ) manners . Most 25 from other shards that have edges connecting to the local 
graph applications or queries are essentially performing vertices of the subgraph . Each subgraph shard 240 stores all 
computations on the vertex values and / or edge weights the associated in / out edges as well as the property of the 
while traversing the graph structure . For example , the subgraph . The graph property includes vertex values and 
single - source - shortest - path ( SSSP ) algorithm finds the edge weights ( if the graph is weighted ) . Each processing unit 
shortest paths from a given source vertex to other vertices in 30 230 computes on its own subgraph shard 240 and updates 
the graph by accumulating the shortest path weights on each the graph property iteratively . Each processing unit 230 is 
vertex with respect to the root . also responsible for sending the values of boundary vertices 

The k - hop reachability query is essentially a local tra- to other processing units 230. Structuring the graph process 
versal in a graph , which starts from a given source vertex ing framework 200 this way allows the decoupling of 
and visits vertices within k - hops . It is a widely used building 35 computation from communication and allows for focusing 
block in graph applications . In practice , the influence of a on improving the computing efficiency of each processing 
vertex usually decreases as the number of hops increases . unit 230 based on its available architecture and resources . 
Therefore , for most applications , potential candidates will be Then , all communications are treated as an abstraction of the 
found within a small number of hops . In addition , real - world I / O hierarchy ( i.e. memory , disk , and network latency ) . It is 
networks are often tightly connected . For example , FIG . 1 40 noted that a subgraph shard 240 does not necessarily need to 
illustrates the cumulative distribution of path lengths over all fit in memory 250. As a result , the I / O cost may also involve 
vertex pairs in the Slashdot Zoo network . In this network , local disk I / O . 
the diameter ( d ) equals 12. The 50 - percentile effective Graph partitioning is an important step in optimizing the 
diameter ( 80.5 ) equals 3.51 and the 90 - percentile effective performance of a graph processing system where the input 
diameter ( 80.9 ) equals 4.71 . Thus , most of the network will 45 graphs cannot fit into a node's memory . Many system 
be visited with less than 5 hops , which is consistent with the variables such as workload balance , I / O cost , etc. , are often 
six - degrees - of - separation theory in social networks . considered when designing a graph partitioning strategy . 

The k - hop query is frequently employed as an interme- There can be different optimal partition strategies depending 
diate “ operator ” between low - level databases and high - level on the graph structure and application behavior . Moreover , 
algorithms . Many higher - level functions such as triangle 50 re - partitioning is often required when graphs change , which 
counting , which is equivalent to finding vertices that are is costly for large - scale graphs . In sample embodiments , the 
within 1 and 2 - hop neighbors of the same vertex , can be solution to this problem is to adopt a lightweight low 
described and implemented in terms of k - hop traversal . overhead partitioning strategy . The C - Graph framework 200 
Breadth - first search ( BFS ) is a special case of k - hop , where deploys a simple range - based partition similar to those by 
k- > 0 . As a result , a graph database's ability to handle k - hop 55 GraphChi , GridGraph , Gemini , etc. The C - Graph frame 
access patterns is a good predictor of its performance . work 200 assigns vertices to different partitions based on 
As noted above , the ability to handle concurrent queries vertex ID , which is re - indexed during graph ingestion . Each 

is very important for industrial big data products . However , partition contains a continuous range of vertices with all 
adding concurrency in graph databases or graph processing associated in / out edges and subgraph properties . To balance 
systems is challenging . For example , graph databases like 60 the workload , each partition may be optimized to contain a 
Titan , JanusGraph® ( based on Titan ) , and Neo4j® are similar number of edges . In a p - node system , a given graph 
designed with multi - query / users in mind . However , their G = ( V , E ) will be partitioned into p continuous subgraphs 
performance when executing concurrent graph queries is G = ( Vi , E ; ) , where i = 0 , 1 , ... , p - 1 . In each G ;, Vi are local 
generally poor . In experiments , Titan took 10 seconds on vertices and E ; is a set of edges { s , t , w } , where either source 
average to complete 100 concurrent 3 - hop queries for a 65 s or destination t belongs to Vi . The rest of the vertices in 
graph of 100 million edges . For some of the queries , the other partitions are boundary vertices . Such assignment of 
response time was as high as 100 seconds . Other graph all out - going edges of a vertex to the same partition is a way 
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of improving the efficiency of local graph traversals . Incom- pass on edge - sets P = 0 , 1 , 2 , 3 , and since these two 
ing edges are stored when running graph algorithms such as vertices are shared among both queries , query performance 
PageRank . can be improved by making only one traversal on these two 
Multi - Modal Edge - Set Based Graph Representations vertices . The compute engine performs user - defined func 

Multi - modal graph representations may be adopted into 5 tions on edges within each edge - set in parallel . Edge - set 
the C - Graph framework 200 to accommodate different graph representation also improves cache locality for itera 
access patterns and achieve best data locality for different tive graph computations like PageRank from two aspects : 1 ) 
graph applications . Compressed sparse row ( CSR ) is a sequential accesses to edges within a local graph , and 2 ) 
common storage format to store the graph . It provides an write locality preserved by storing the edges in CSC format . 
efficient way to access the out - going edges of a vertex , but 10 Updating the vertex value array in ascending order also 
it is inefficient when accessing the incoming edges of a leads to better cache locality while enumerating the edges in 
vertex . To address this inefficiency , the incoming edges are an edge - set . 
stored in compressed sparse column ( CSC ) format , and Such concurrent graph traversals using edge - set represen 
out - going edges in compressed sparse row ( CSR ) format . tation enables affinity - aware graph traversal optimization . 

To improve cache locality , the graph processing system 15 As noted above , graph local traversal ( e.g. , k - hop ) is a 
described herein uses iterative graph computing with an fundamental operation of the implementation of many que 
edge - set based graph representation . Similar to the range- ries and / or graph analysis algorithms . Graph local traversal 
based graph partitioning noted above , each subgraph parti- receives as input a root vertex , traversal depth , and optional 
tion is further converted into a set of edge - sets . Each traversal filters and provides as output visited vertices using 
edge - set contains vertices within a certain range by vertex 20 user defined functions ( e.g. , mark visited vertices ) . It is 
ID . FIG . 3A illustrates a global adjacency matrix of an generally recognized that in a block adjacent matrix repre 
edge - set based graphic representation divided into two sub- sentation of a graph as shown in FIG . 3A that traversing a 
graph partitions , with each partition converted into 8 edge- graph through out - going edges is equivalent to scanning the 
sets whereby traversing the graph through out - going edges blocks ( edge - sets ) in a left - right pattern . Thus , given a set of 
is equivalent to scanning the edge - sets in left - right pattern . 25 concurrent queries , two kinds of affinity may be identified : 
As shown in FIG . 3A , an input graph 300 having vertices 0-7 1 ) the shared vertices among queries , and 2 ) shared vertices 
is represented in global adjacency matrix format and is within an edge - set . For both kinds of affinity , the graph 
divided into two partitions , with each partition converted processing system only accesses the shared edge - set once 
into eight edge - sets ( p11 , p12 , p13 , p14 , p21 , p22 , p23 , p 24 and caches the data for re - use . Concurrent query perfor 
for partition 1 and p31 , p32 , p33 , p34 , p41 , p42 , p43 , p44 for 30 mance is thus improved by eliminating repeated traversals 
partition 2 ) . To traverse a graph through out - edges , the for a set of queries in accordance with the identified affinity . 
global adjacency matrix illustrated in FIG . 3A is scanned left Query Processing 
to right . Efficient implementation of a distributed graph engine 

Generating edge - sets is straightforward . Vertex degrees requires balancing computation , communication and stor 
are obtained after partitioning the input graph 300 across 35 age . The C - Graph framework supports both the vertex 
machines , and then the vertices of each subgraph are divided centric and partition - centric models . The partition - centric 
into a set of ranges by evenly distributing the degrees . Next , model is specifically optimized to handle graph traversal 
the edge list is scanned again , and each edge is allocated to based algorithms such as k - hop and BFS . The performance 
an edge - set according to the ranges into which source and of such models depends strongly on the quality of the graph 
destination vertices fall . Finally , within each edge - set , the 40 partitions . 
CSR / CSC format is generated using local vertex IDs calcu- FIG . 4 illustrates a graph query workflow in a sample 
lated from global vertex ID and partition offset . The pre- embodiment . In particular , FIG . 4 illustrates the graph 
processing reduces the complexity of global sorting and is traversal iterations in the partition - centric model , which 
conducted in a divide- and conquer manner . generally requires fewer supersteps to converge compared to 

The granularity of an edge - set is chosen such that the 45 the vertex - centric model . In the partition - based model , ver 
vertex values and associated edges fit into the last level tices can be classified into local vertices and boundary 
cache ( LLC ) . However , the sparse nature of real large - scale vertices . The values for local vertices are stored in the local 
graphs can result in some tiny edge - sets that consist of only partition , while boundary vertex values are stored in the 
a few edges each , if not empty . Loading or persisting many remote partitions . Local vertices communicate with bound 
such small edge - sets is inefficient due to the I / O latency . 50 ary vertices through messages . A vertex can send a message 
Therefore , small edge - sets that are likely to be processed to any other vertices in the graph using the destination 
together are consolidated so that data locality is potentially vertex's unique ID . 
increased . Consolidation can occur between adjacent edge- In FIG . 4 , input software enables the graph processing 
sets both horizontally and vertically . The horizontal consoli- system to ingest a graph 400 from a given data source into 
dation improves data locality especially when the out - going 55 the graph processing system . To enable concurrent queries in 
vertex edges are visited . Vertical consolidation benefits the sample embodiments , preprocessing software includes 
information gathering from the vertex's parents . range - based graph partitioning / sharding software 410 that 

Concurrent graph traversals can benefit from edge - set partitions the input graph 400 into a set of subgraphs as 
representation from two dimensions of locality maintained described above . Execution software of each subgraph 
inside an edge - set in at least two ways : 1 ) shared neighbor 60 420A , 420B , etc. assigns its subgraph to a traverse engine 
vertices of frontiers within an edge - set , and 2 ) shared 422 for distributed traversal , which includes determining 
vertices among queries . FIG . 3B illustrates a graph for whether the next node to be traversed is local or not at 423 . 
affinity - aware traversal of trees for two concurrent queries the traverse engine 422 processes the next node in the 
where the first three levels are illustrated . In the simple frontier at 424 and traverses to the next node in the subgraph . 
example shown in FIG . 3B , two concurrent queries q0 and 65 However , when it is determined at 423 that the next node to 
q1 are presented , each by a graph traversal tree of three be traversed is not local , a message is generated by the first 
levels . Visiting neighbors of vertex 2 and 3 takes just one subgraph 420A that is put into an outbox of a remote task 

If so , 
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buffer 426 for transmittal to a second subgraph 420B con- computation . The inbox and outbox for each subgraph store 
taining the next node to be processed . During traversal of the the cross - partition messages . For example , each query 
subgraph 420A , the traverse engine 422 also reads messages propagates a unique label to mark the traversed edges in an 
from other subgraphs ( e.g. , subgraph 420B ) that are received edge - set of a subgraph shard . When a neighbor is remote , a 
in an inbox of the incoming task buffer 428 from the outbox 5 message to the outbox is formed . Also , messages from an 
of a remote task buffer 426 of another subgraph 420B . inbox are decoded during subgraph traversal . 
As illustrated in FIG . 4 , the input software also enables As will be explained below with respect to FIG . 6 , 

the graph processing system to receive concurrent queries compact stateful representation for concurrent traversal 
430 that are to be performed across subgraphs 420A , 420B , across subgraphs 420 may be implemented using two - bit 
etc. of the graph 400. The concurrent queries 430 are 10 arrays that compactly represent the local vertices falling into 
scheduled by a query scheduler 440 of the preprocessing frontiers and those that have been visited already . In sample 
software . The query scheduler 440 accesses the vertices in embodiments , each subgraph utilizes two bit arrays , one for 
the edge - sets of the property graph and assigns the vertices marking vertices in frontiers and the other for verifying 
to subgraphs . The scheduled queries are input into starting those vertices that have been visited . Each bit array is of size 
points of respective subgraphs 420 for subgraph traversal . 15 N by k , where N is the number of vertices in the local 
As appropriate , messages are read by each subgraph from its subgraph and k is the number of concurrent queries . The 
incoming task buffer 428 that are received from the remote messages in combination with the two bit arrays enable the 
task buffer 426 of a remote subgraph during traversal . graph processing system to determine in the next iteration of 

Thus , the graph query workflow in FIG . 4 includes the graph traversal if a vertex has been visited or not . The 
steps ( 1 ) - ( 5 ) identified in FIG . 4 as : 20 stateful frontier representation proceeds by starting from the 

1. Ingest graph 400 from a given data source into the query roots and marking the frontier bit array and the visited 
graph processing system ; bit array . Unvisited neighbors are found and populated into 

2. Partition the input graph 400 into a set of subgraphs the frontier . For all vertices in the frontier , their neighbors 
420 ; are checked to determine if they have been visited before 

3. Assign each subgraph 420 to a traverse engine 422 for 25 and , if not , the neighbors are visited . The process then again 
distributed traversal ; finds unvisited neighbors and populates them into the fron 

4. Communicate across subgraphs 420 to execute a query tier to repeat the visitation check . Utilization of a bit - map 
as needed ; and reduces memory storage space consumption and also makes 

5. Perform concurrent queries across subgraphs 420A , set operations , such as set unions , easy to implement effi 
420B , etc. by using affinity - aware local subgraphs traversal 30 ciently . The state message stored in the bit arrays helps 
to identify common edges and communicating across sub- determine in the next iteration if a vertex has been visited or 
graphs . not . 

Using the graph query workflow of FIG . 4 , overall To illustrate the partition - centric model , two operations 
execution time is reduced by leveraging the repeated and are considered : local read and remote write , both of which 
collocated vertices during traversals , which is essentially to 35 incur cross - partition communications . Local read is per 
improving the spatial data locality ( e.g. two vertices in the formed when reading the value of a boundary vertex . For 
same edge - set ) and temporal data locality ( vertices shared example , the PageRank value of a local vertex is calculated 
between queries ) . Also , the graph query workflow of FIG . 4 from all the neighboring vertices , some of which are bound 
provides concurrent traversal frontier synchronization on ary vertices . In this case , a locally updated vertex value is 
very large - scale graphs by using distributed computation of 40 synchronized across all partitions after each iteration . In 
the respective subgraphs and communication across the other cases , a partition may need to update the value of a 
graph partitions of concurrent traversal frontiers . As illus- boundary vertex of the partition . For example , in subgraph 
trated with respect to FIG . 5 below , the graph processing traversals involving traversing depth , when a boundary 
system clarifies that the traversal frontier , when given a vertex is visited , its depth needs to be updated remotely . The 
traversal task , provides a list of vertices to visit in the next 45 boundary vertex ID with its value along a traverse operator 
iteration . The distributed frontier is found in each iteration , will be sent to the partition to which it belongs . In that 
and the communications described herein are used to find partition , the vertex value will be asynchronously updated 
the traversal frontier across subgraphs . Given a set of and the traversal on that vertex will be performed based on 
traversal tasks , the frontiers are found simultaneously , rather the new depth . In a sense , all vertices are updated locally to 
than processing one by one . For example , an inbox in the 50 achieve the maximum performance through efficient local 
incoming task buffer 428 of each subgraph and an outbox in computation , and all changes of the graph property are 
the remote task buffer 426 of each subgraph store the exchanged proactively across partitions using high speed 
cross - partition messages for execution . In sample embodi- network connections . A simple example of subgraph tra 
ments , each query propagates a unique label to mark the versal is shown in FIG . 5 . 
traversed edges in an edge - set of a subgraph shard . When a 55 FIG . 5 illustrates a simple , two - partition graph example 
neighbor vertex is remote , the subgraph 420 forms messages ( partition 0 and partition 1 for vertices ( 0 ) - ( 3 ) ) with four 
to the outbox of the remote task buffer 426 or decodes a concurrent graph traversals shown in table 500 starting from 
message from the inbox of the incoming task buffer 428 . all four vertices where different queries are distinguished 

In general , the frontiers are found concurrently and syn- using different symbols . Each partition has an inbox buffer 
chronized by starting from each root and propagating a 60 502 for incoming tasks and an outbox buffer 504 for 
distinct label to each neighbor vertex . A vertex can receive outgoing tasks , and each task is associated with the desti 
multiple labels if it appears in multiple traversal tasks . The nation vertex's unique ID . The visited vertices are synchro 
inbox and outbox are used to buffer labels to send to / receive nized after each iteration and will not be re - visited . 
from other subgraphs . Affinity can be identified and used to As illustrated at 510 for partition 0 , the query represented 
limit traversals . The resulting concurrent traversal frontier 65 by the circular symbol from vertex 0 proceeds to vertex 1 as 
synchronization and communication across graph partitions partition 0 is traversed . However , since vertices 2 and 3 are 
enables queries on very large - scale graphs to use distributed not in partition 0 but are in partition 1 , the query represented 
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by the circular symbol from vertex 0 to neighboring vertices involves more numeric computation which shows hybrid 
2 and 3 in the graph are placed into the outbox 504 for workload behaviors . The graph traversal pattern is defined in 
communication to vertices 2 and 3 in partition 1. Similarly , the Traverse function , and the iterative computation is 
since vertex 3 is not in partition 0 but is in partition 1 , the defined in the Update function . An example of a k - hop 
query represented by the diamond symbol from vertex 1 to 5 Traversal implementation is shown in Listing 2 . 
neighboring vertex 3 is also placed into the outbox 504 for 
communication to vertex 3 in partition 1. As illustrated , the 
outbox 504 at 510 for partition 0 is provided to the inbox 502 def Traverse ( task queue : Q , hops : k ) { 
of partition 1 at 520. As illustrated , the query represented by while any s in Q { 

if ( s.hops < k ) { the circular symbol traverses vertex 2 and also traverses 10 if ( isLocalVertex ( s ) ) { vertex 3 as vertex 3 is in the same partition 1. Also , the query for ( t in s.neighbors and ! visited ( t ) ) { 
represented by the diamond symbol from vertex 1 also t.hops = s.hops + 1 
traverses vertex 3 upon being read from the inbox 502 . if ( isLocal Vertex ( t ) ) Q.push ( t ) 

Also , as illustrated at 530 for partition 1 , the query else sendTo ( t , t.hops ) 
visited ( t ) represented by the square symbol from vertex 2 proceeds to 15 } 

vertex 3 as partition 1 is traversed . However , since vertex 1 } 
is not in partition 1 but is in partition 0 , the query represented } 

Q.pop ( s ) by the square symbol from vertex 2 to neighboring vertex 0 } in the graph is placed in the outbox 504 for communication } 
to vertex 0 in partition 0. As illustrated at 540 , the outbox 20 
504 at 530 for partition 1 is provided to the inbox 502 of 
partition 0 at 540. As illustrated , the query represented by the In Listing 2 , for each vertex in a local task queue , neighbor 
square symbol traverses vertex 0 and also traverses vertex 1 vertices are visited and put into two queues based on local 
as vertex 1 is in the same partition 0. These symbols in the vertices that will be inserted into the local task queue while 
vertices thus mark the traversals of each query through the 25 boundary vertices will be sent to a remote task queue . All 
subgraphs . neighbors are marked as visited and shared cross all pro 

Thus , to synchronize the current query frontier , the graph cessing units . The maximum depth of traversal is defined by 
processing system start from each root and propagates a hops k . 
distinct label to each neighbor vertex . A vertex can receive In sample embodiments , the Update function is an imple 
multiple labels if it appears in multiple traversal tasks . An 30 mentation of the Gather - Apply - Scatter ( GAS ) model by 
inbox and outbox are used to buffer labels to send to and providing a vertex - programming interface . A PageRank 
receive labels from other subgraphs . Affinity can be identi- example using the GAS interface is shown in Listing 3. The 
fied in this step by recognizing common labels . function looks no different than a normal GAS model graph Concurrent queries can be executed individually in processing framework . However , the present implementa 
request order or processed in batches to enable subgraph 35 tion does not generate additional traffic in the gather phase sharing among queries . To mitigate the memory pressure in since all edges of a vertex are local . concurrent graph queries , dynamic resource allocation is 
utilized during graph traversals . Only values of vertices in 
previous and current levels need to be kept , instead of saving def Gather ( v , sum ) sum + = v.val 
value per vertex during the entire query . def Apply ( v , sum ) v.val = 
Programming Abstraction def Scatter ( v ) v.val / v.outdegree 

In a sample embodiment , an interface is provided for the 
partition - centric model . The interface may be similar to that In Listing 3 , the gather phase collects inbound messages . 
first introduced by Giraph ++ TM , which has been quickly The apply phase consumes the final message sum and adopted and further optimized . Listing 1 shows the interface 45 updates the vertex data . The scatter phase calculates the of the basic methods call in the partition - centric model . message computation for each edge . 

Concurrent Queries Optimization 
The concurrent queries are further optimized by leverag Listing 1 : Partition - centric Model ing several state - of - art techniques . In practice , it is ineffi 

void abstract compute ( ) ; cient to use a set or queue data structure to store the frontier void sendTo ( V destination , M msg ) ; since the union and set operations are expensive with a large void vote Tohalt ( ) ; 
bool ifHasVertex ( V vid ) ; number of concurrent graph traversals . In addition , the 
bool is LocalVertex ( V vid ) ; dramatic difference in frontier size at different traversal bool isBoundary Vertex ( V vid ) ; levels introduces dynamic memory allocation overhead . It Collection getLocalVertices ( ) ; 
Collection getBoundary Vertices ( ) ; also requires a locking mechanism if the frontier is pro 
Collection getAllVertices ( ) ; cessed by multiple threads . Instead of maintaining a task 
void barrier ( ) ; queue or set , the approach introduced in MS - BFS to track 

concurrent graph traversal frontier and visited status has 
In sample embodiments , two functions are provided to 60 been implemented in C - Graph and extended to distributed 
accommodate different categories of graph applications : a ) environments . For example , for each query , 2 bits are used 
graph traversal on graph structure and b ) iterative compu- to indicate if a vertex exists in the current or next frontier , 
tation on graph property . Graph traversal involves data- and 1 bit is used to track if it has been visited . A fixed 
intensive accesses and limited numeric operations . The number of concurrent queries are decided based on hardware 
irregular data access pattern leads to poor spatial locality and 65 parameters , for example , the length of the cache line . The 
introduces significant pressure on the memory subsystem . frontier , frontierNext and visited values are stored in arrays 
On the other hand , computation on graph property often for each vertex to provide constant - time access . 
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FIG . 6A is an example graph of bit operations for two corresponding inboxes and outboxes of the affected sub 
concurrent queries . As illustrated , an example graph 600 graphs are updated at 790. The bit array is updated for the 
with 10 vertices ( 0 ) - ( 9 ) is divided into two partitions on two frontier and the visited vertices at 710 ( FIG . 6 ) , and the 
machines using range - based partitioning . Partition 0 con- subgraph traversal continues the query ( ( 2 ) ) until all vertices 
tains vertices V : { 0 ~ 4 } , and partition 1 contains vertices 5 have been visited . 
V : { 5 ~ 9 } . Each partition maintains a frontier and visited bit FIG . 8A illustrates a flow chart of a graph processing 
array for each query . system for concurrent property graph queries of a property FIG . 6B illustrates two concurrent graph traversal queries graph where the property graph is implemented in a distrib based on the example graph of FIG . 6A . FIG . 6B shows the uted network of nodes in a sample embodiment . In the traversal tree for concurrent queries q0 starting at source 10 sample embodiments , the property graph is input at 800 and vertex 0 and q1 starting at source vertex 4. Level 1 identifies sharded and distributed across multiple processing nodes the vertices 1 - hop away ; Level 2 identifies the vertices 
2 - hops away ; Level 3 identifies the vertices 3 - hops away , using range - based graph partitioning techniques at 810. The 
and the like in the graph 600. As illustrated , the hops may respective processing nodes within the distributed network 
occur across the partition boundary 610 . of nodes process respective subgraph shards of the property 
FIG . 6C illustrates the bit array representations for fron graph to be queried at 820. In the sample embodiments , each 

tier and visited nodes at each hop of the example graph of processing node includes a processing unit with a subgraph 
FIG . 6A . The frontier in the current hop is from frontierNext shard containing a range of local vertices that are a subset of 
in the previous level . Each row represents a vertex ( ( 0 ) - ( 9 ) ) , all vertices of the property graph . Also , each subgraph shard 
and each column represents a query ( q0 , q1 ) . The queries 20 has boundary vertices having edges that connect the sub 
share the same vertices in each iteration , and data locality is graph shard to boundary vertices of another subgraph shard 
preserved if updating concurrent queries at the same time . whereby the respective shards together represent the entire 
The corresponding bit arrays shown in FIG . 6C illustrate the property graph . The respective processing nodes convert 
changes in the bit arrays after each hop side by side . The each subgraph shard into a set of edge - sets containing 
shaded “ X ” s indicate that a vertex is being visited in the 25 vertices within a certain range by vertex ID at 820. The 
current hop , and the unshaded “ X ” s indicated that a vertex edge - sets of the subgraphs are cached at 750. In response to 
has been visited during a previous hop . concurrent queries of the property graph from at least one 
As illustrated in FIG . 6C , at the initial traversal state , only user at 830 , the queries of the subgraph shards are scheduled 

vertex 0 has been visited for query q0 and only vertex 4 has at 840 in accordance with an initial vertex of the cached 
been visited for query q1 . However , after 1 hop , query 20 30 edge - sets for each concurrent user query . The respective 
has visited vertices ( 1 ) , ( 2 ) , and ( 3 ) , while query q1 has subgraphs are concurrently traversed at 850 during execu 
visited vertices ( 1 ) , ( 3 ) , and ( 7 ) . Thus , after 1 hop , query q0 tion of the concurrent queries by traversing edge - sets within 
has visited vertices ( 0 ) , ( 1 ) , ( 2 ) , and ( 3 ) and query q1 has a subgraph on each node . The graph processing system also 
visited vertices ( 1 ) , ( 3 ) , ( 4 ) , and ( 7 ) . After 2 hops , query q0 uses dynamic resource allocation during traversals of the 
has visited vertices ( 4 ) , ( 5 ) , and ( 6 ) , while query q1 has 35 property graph and stores values for a previous and a current 
visited vertices ( 0 ) , ( 2 ) , ( 5 ) , ( 6 ) , and ( 8 ) . Thus , after 2 hops , level of the property graph at 860. The process may repeat 
query q0 has visited vertices ( 0 ) , ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) , ( 5 ) , and ( 6 ) until the queries have visited all relevant nodes . 
and query q1 has visited vertices ( 0 ) . ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) , ( 5 ) , FIG . 8B illustrates the traversal of the subgraphs in step 
( 6 ) , ( 7 ) , and ( 8 ) . Finally , after 3 hops , query qo has visited 850 in more detail . First , when issuing a query on a given 
vertices ( 7 ) , ( 8 ) , and ( 9 ) and query q1 has visited vertex ( 9 ) . 40 node in a distributed environment , the root of a query will 
Thus , after 3 hops , q0 and q1 have visited all vertices ( 0 ) - ( 9 ) be put into the frontier or the outbox depending on if the root 
in example graph 600. The two - bit array of FIG . 6C provides is a local vertex or a boundary vertex . The property graph is 
a simple and convenient way to track the visits during each traversed during execution of the concurrent queries by 
hop . starting from each root at 851 and propagating a unique label 
Processing Workflow 45 to each neighbor vertex to mark traversed edges in an 
FIG . 7 illustrates a summary of the workflow that pro- edge - set of the subgraph shard at 852 . 

vides affinity aware traversal of a graph , concurrent frontier During each level traversal , similar to dealing with the 
sync - up , and stateful frontier representation in sample root of a query as in step 851 , the unvisited neighbor vertex 
embodiments . As illustrated in FIG . 7 , the workflow of the is put into the frontier or the outbox with unique label 
graph processing device inputs graph 400 at ( 1 ) and parti- 50 depending on if the neighbor vertex is a local or a boundary 
tions the graph 400 using , for example , the range - based vertex . So , before traversing a level of graph , the frontier 
graph partitioning / sharding software 410 described above will check if the inbox has any incoming requests and update 
with respect to FIG . 4. The partitioning constructs edge - sets the bit arrays as well as apply the optimization . The inbox 
at 700 for each subgraph 420 as described above . Concurrent and outbox are used at 853 to buffer the unique labels to 
queries 430 input at ( 2 ) traverse the subgraphs and update 55 send / receive from neighbor subgraphs in the distributed 
the bit - arrays for the frontier and visited vertices at 710 ( 3 ) ) network of nodes . 
as described above with respect to FIG . 5 and FIG . 6. An Traversing the property graph at 850 also includes tra 
affinity check of the bit - arrays is performed at 720 ( ( 4 ) ) , and versing ( 1 ) shared neighbor vertices of adjacent vertices to 
the inboxes of the subgraphs are read at 730 to process the visit in a next iteration of traversal of the subgraph within an 
messages at 740 during the process of finding neighbors of 60 edge - set and ( 2 ) shared vertices among concurrent queries 
vertices in frontiers at ( 5 ) taken from the edge - set cache 750 only one time for the concurrent queries by providing 
within the same partition or across partitions as described affinity - aware traversal optimization at 854 . 
above . Vertices that have been visited are removed at 760. If At 855 , two - bit arrays are updated to represent the local 
all vertices in the subgraph have been visited , the edge - set vertices falling into respective partitions ( frontiers ) and 
data cache is determined to be empty at 770 , and the process 65 those that have already been visited , where each bit array is 
concludes at ( 6 ) . However , if there are more vertices to visit , of size N by k , where N is the number of vertices in a local 
the query tokens are written to the outbox at 780 and the subgraph and k is the number of concurrent queries . 

?? 



Vertices 

US 11,120,023 B2 
19 20 

Unvisited neighbors are visited at 856 and populated into process graphs at different scales . Orkut and Friendster are 
the frontier representation . on - line social networks where users form friendships with 

Then , for all vertices in the frontier representation , their each other . Orkut has 3 million vertices and 117 million 
neighbors are visited at 857 to determine if the respective edges with a diameter of 9 , while Friendster has 65.6 million 
vertices have been visited before . This process repeats at 858 5 and 1.8 billion edges with a diameter of 32. Both graphs 
until all neighbors in the subgraph have been checked by the form large connected components with all edges . Two 
query . The traversal will complete when all neighbor ver- semi - synthetic graphs were generated with a Graph 500 
texes are visited or the level of traversal reaches the number generator and a Friendster graph . Given a multiplying factor 
of k - hop queries , which is the maximum level to traverse for m , the Graph 500 generator produced a graph having m 
a given root and is a user - defined query parameter . 10 times the vertices of Friendster , while keeping the edge 
Once all vertices in the subgraph have been checked , the vertex ratio of Friendster . The smaller semi - synthetic graph 

query ends at 859 . has 131.2 million vertices and 72.2 billion edges , and the 
Experimental Evaluation larger semi - synthetic graph has 985 million vertices and 
To evaluate the efficiency of the graph processing system 106.5 billion edges . The details of each graph are shown in 

described herein and its optimizations , the system perfor- 15 Table 1 below . 
mance was measured using both real - world and semisyn 
thetic graph datasets . The system was tested with various TABLE 1 
types of graph algorithms , and experimental results reported 
on scalability with respect to input graph size , number of Experimental Datasets Edges 

machines and number of queries . The performance of the 20 Orkut ( OR - 100M ) 3,072,441 117,185,083 
graph processing system with open - source graph database Friendster ( FR - 1B ) 65,608,366 1,806,067,135 
Titan and state - of - the - art graph processing engine Gemini Friendster - Synthetic ( FRS - 72B ) 131,216,732 72,224,268,540 

Friendster - Synthetic ( FRS - 100B ) 984,125,490 106,557,960,965 was compared 
Experimental Setup 

In the experimental evaluation , two graph algorithms 25 Experimental Results 
were used to show the performance of the graph processing The open - source graph database Titan was used , which 
system running different types of graph applications . supports concurrent graph traversals , as a baseline . Since 
A K - Hop Query is a fundamental algorithm for graph Titan took hours to load a large graph , a small graph Orkut 

traversals and was used to evaluate the performance of was used to compare the single machine performance run 
concurrent queries . Most of the experiments were based on 30 ning Orkut on Titan with the graph processing system 
the 3 - hop query , which traverses all vertices in a graph that described herein . The internal APIs provided by Titan were 
are reachable within 3 hops from the given source vertex . used for both graph traversals and PageRank . Experimen 
For each query , a frontier queue and visited status were tation was done with the well - known open - source graph 
maintained for each vertex . Initially all vertices were set as database Neo4j® . However , this system was even slower to 
not visited , and frontier contained the source vertex . The 35 load and traverse than a large graph . Therefore , Neo4j® was 
level of a visited vertex or its parent was recorded as vertex not included in the comparison . 
value . The unvisited neighbors of the vertices in the frontier Before discussing the experimental results , it must be 
were added to the frontier for the next iteration . The details noted that an important quality metric of an online business 
of the implementation are illustrated in Listing 2 above . The like a website or a database is response time . There is a 
main factor used to evaluate the performance of the query 40 strong correlation between response time and business met 
system is the response time for each query in a concurrent rics since wait time heavily impacts user experience . To 
queries environment . Between 10 to 350 concurrent queries quantify the performance impact on a query , the following 
were tested , and the query time for each query was reported . three thresholds are defined : 

PageRank is a well - known algorithm that calculates the Users view response time as instantaneous ( 0.1-0.2 sec 
importance of websites in a websites graph . In PageRank , all 45 ond ) : Users can get query results right away and feel 
vertices are active during the computation . The vertex that they directly manipulate data through the user 
page - rank value is updated after gathering all the neighbors ' interface . 
page - rank values . In experiments , 10 iterations were run for Users feel they are interacting with the information ( 1-5 
performance comparison . An illustration of the implemen seconds ) : They notice the delay but feel that the system 
tation using the GAS ( Gather - Apply - Scatter ) API is shown 50 is working on the query . A good threshold is under 2 
in Listing 3 above , with the sum value for each vertex seconds . 
initialized to zero . Although the graph processing system is Users are still focused on the task ( 5-10 seconds ) : They 
mainly used for k - hop queries , PageRank was used to keep their attention on the task . This threshold is 
evaluate the iterative graph computation applications , which around 10 seconds . Productivity suffers after a delay 
have different access patterns compared to graph traversals . 55 above this threshold . 

Most of the experiments were conducted on a 9 server According to the above thresholds , one could reasonably 
machines cluster , each with an Intel® Xeon® CPU E5-2600 expect a distributed graph processing system to respond to 
V3 , having a total of 44 cores at 2.6 GHz and 125 GB main a set of ( e.g. , 100-300 ) concurrent queries within a few 
memory . The system and all algorithms were implemented seconds ( e.g. , 2 seconds ) . 
in C ++ 11 , compiled with GCC 5.4.0 , and executed on 60 System Performance 
Ubuntu 16.4 . Socket and MPI ( Message Passing Interface ) The concurrent 3 - hop query and PageRank performance 
were used for network communications . was compared with the graph database Titan on a single 

During evaluation , an experiment was conducted with machine . 100 concurrent queries were run for both systems , 
both real - world and semi - synthetic datasets . Two real world with each query containing 1.0 source vertices . The source 
graphs were used : Orkut and Friendster from SNAP , and two 65 vertices were randomly chosen , with each system perform 
semi - synthetic graphs . Both are generated from Graph 500 ing 1000 random subgraph traversals to avoid both graph 
generator with Friendster to test the system's ability to structure and system biases . The average response time for 
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a query was calculated from the 10 subgraph traversals of depends on the average degree of root vertices , which is 38 , 
each query , and average response times for 100 queries are 27 , 108 for OR - 100M , FR - 1B and FRS - 100B , respectively . 
shown in FIG . 9 , sorted in ascending order . The scalability of the C - Graph processing system 
The results shown in FIG . 9 demonstrate the C - Graph described herein was studied with an increasing number of 

graph processing system achieving a 21x - 74x speedup over 5 machines . Experimentation was conducted on both types of 
Titan . Moreover , the C - Graph processing system described applications : PageRank and concurrent 3 - hop queries . 
herein exhibited a much lower upper bound on query time , The inter - machine scalability was examined using 1 to 9 
with all 100 3 - hop queries returning within 1 second , while machines to run PageRank on graph datasets OR - 100M . 

FR - 1B and FRS - 72B . The results are shown in FIG . 12. All Titan took up to 70 seconds for some queries . In addition , the 10 results are normalized to single machine execution time of C - Graph processing system described herein showed much 
lower variation in response time . corresponding graph . Overall the scalability is very good . 

For the FR - 1B graph , it achieves speedup of 1.8x , 2.4x , and The distribution of all 1000 subgraph traversal times was 2.9x using 3 , 6 and 9 machines , respectively . With more also compared , with the results shown in FIG . 10A . The machines , the inter - machine synchronization becomes more average query response time was 8.6 seconds for Titan , and 15 challenging . In the smallest graph OR - 100M , as expected , only 0.25 second for C - Graph . About 10 % of the queries in the scalability becomes poor beyond 6 machines as com 
Titan took more than 50 seconds and up to hundreds of munication time dominates the execution . Better scalability 
seconds . This is likely due to the complexity of the software was observed with the largest graph FRS - 72B , achieving up 
stack used in Titan , such as the data storage layers and Java to 4.5x speedup with 9 machines . 
virtual machine . These inefficiencies make the results for 20 FIGS . 13A - 13D depict the response time distribution for 
PageRank running on Titan even worse . For the Orkut 100 concurrent k - hop queries on a single graph using 
( OR - 100M ) graph , Titan execution time was hours for a different number of machines . In particular , FIGS . 13A - 13D 
single iteration while C - Graph only took seconds . Overall , illustrate the multi - machine scalability results for 100 que 
the C - Graph processing system showed both better and more ries with FR - 1B graph for 1 machine ( FIG . 13A ) , 3 
consistent performance gains compared to Titan . 25 machines ( FIG . 13B ) , 6 machines ( FIG . 13C ) , and 9 

Most existing graph processing systems lack the ability to machines ( FIG . 13D ) . While the machine number increases , 
handle concurrent queries in large - scale graphs . Gemini was most of the queries were able to be completed in a short time 
used as an example of how inefficient a design that lacks ( i.e. , 80 % queries receive a response within 0.2 seconds , and 
concurrency can be . 90 % queries finish within one second ) . For a fixed amount 

Simply using an alternative way instead of re - designing 30 of concurrent traversal queries , as the number of machines 
the concurrent support by , for example , making Gemini start used increases , the number of visited distinct vertices does 
with multiple source vertices , will fail . In these systems , not vary , while the number of boundary vertices increases 
concurrently - issued queries are seria ed , and a query's significantly . More boundary vertices lead to increased com 
response time will be determined by any backlogged queries munication overhead for synchronization . In the C - Graph 
in addition to the execution time for the current query . Three 35 framework , the partition - centric model was employed and 
machines were used to repeat the 100 queries with the combined with the edge - set technique to solve this problem . 
Friendster ( FR - 1B ) graph on both systems . The response As noted above , the main goal of the C - Graph framework 
time distribution is shown in FIG . 10B . Even though Gemini is to execute concurrent graph queries efficiently . To evalu 
is very efficient and only takes tens of milliseconds for a ate this property , the scalability of the C - Graph framework 
single 3 - hop query , the average query response time is 40 was studied as the query count increased . FIGS . 14A - 14D 
around 4.25 seconds due to the stacked up wait time . The show the response time distribution for increasing number of 
average response time for C - Graph is only about 0.3 sec- concurrent 3 - hop queries running the FRS - 100B graph on 9 
onds . machines . In particular , FIGS . 14A - 14D illustrate the 3 - hop 

Experiments also were run to focus on the scalability of query count scalability results for a FRS - 100B graph for 20 
the C - Graph processing system utilizing different input 45 queries ( FIG . 14A ) , 50 queries ( FIG . 14B ) , 100 queries 
graph datasets , increasing the number of machines and ( FIG . 14C ) , and 350 queries ( FIG . 14D ) . For up to 100 
query counts . concurrent 3 - hop queries , most of the queries can finish in 

For concurrent queries , an important performance indi- a short time . 80 % of the queries are completed within 0.6 
cator is how the upper bound of the response time scales as seconds , and 90 % queries finish within one second . When 
the input graph size increases . A good query system should 50 the concurrent query count reaches 350 , the performance of 
guarantee that all queries return within latencies that are C - Graph begins to degrade . About 40 % queries can respond 
acceptable to the users . To understand how the C - Graph within one second , and 60 % queries can finish within the 2 
graph processing system described herein scales with seconds threshold . There is a wait of 4 to 7 seconds for the 
increased input graph size , response times were measured remaining queries . The slowdown of the C - Graph frame 
for different datasets : Orkut ( OR - 100M ) with 100 million 55 work is mainly caused by resource limits , especially due to 
edges , Friendster ( FR - 1B ) with 1 billion edges , and Friend- the large memory footprint required for concurrent queries . 
ster - Synthetic ( FRS - 100B ) with 100 billion edges . Since every query returns with found paths , the memory 
FIG . 11 shows the histogram of response time for 100 usage increases linearly with the query count . 

concurrent 3 - hop queries running different graphs with 9 Further comparisons were made regarding the perfor 
machines . It can be observed that for both graphs , about 85 % 60 mance and scalability of C - Graph to Gemini to maximize 
of the queries return within 0.4 second for FR - 1B , and for the query hops . Experiments were done with 1 , 64 , 128 and 
FRS - 100B the response time slightly increases to 0.6 second 256 concurrent BFS queries using the Friendster ( FR - 1B ) 
for the same percentage of queries . The upper bound of graph on 3 machines . Since Gemini does not support con 
query response time is 1.2 seconds for FR - 1B , and for current queries , total execution time is reported for serialized 
FRS - 100B it increases slightly to 1.6 seconds . The upper 65 queries running on Gemini . Also , because the C - Graph 
bound of response time for both graphs is within the 2.0 processing framework reaches the system's memory limit 
seconds threshold . It is noted that the response time highly when running higher number of hops with more than 25 
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concurrent BFS queries , hit operations were enabled . The nection may include a Local Area Network ( LAN ) , a Wide 
query paths were not recorded . FIG . 15 illustrates the Area Network ( WAN ) , cellular . Wi - Fi , Bluetooth , or other 
performance comparison of concurrent BFS queries using networks . According to one embodiment , the various com 
the C - Graph system described herein and a Gemini system ponents of computer 1600 are connected with a system bus 
running a FR - 1B graph on three machines . As FIG . 15 5 1620 . 
shows , the execution time for Gemini is linear with the Computer - readable instructions stored on a computer 
number of concurrent BFS queries . C - Graph starts with the readable medium are executable by the processing unit 1602 
same performance for a single BFS which is completed in of the computer 1600 , such as a program 1618. The program 
about 0.5 seconds . However , C - Graph execution time 1618 in some embodiments comprises software that , when 
increases sublinearly with the number of concurrent BFS 10 executed by the processing unit 1602 , performs operations 
queries . As a result , C - Graph outperforms Gemini by about according to any of the embodiments included herein . A hard 
1.7x at 64 and 128 concurrent BFSs , and 2.4x at 256 drive , CD - ROM , and RAM are some examples of articles 
concurrent BFSs . including a non - transitory computer - readable medium such 
Computer Architecture as a storage device . The terms computer - readable medium 
FIG . 16 is a block diagram illustrating circuitry in the 15 and storage device do not include carrier waves to the extent 

form of a processing system for implementing systems and carrier waves are deemed too transitory . Storage can also 
methods of implementing the graph processing system as include networked storage , such as a storage area network 
described above with respect to FIGS . 1-15 according to ( SAN ) . Computer program 1618 may be used to cause 
sample embodiments . All components need not be used in processing unit 1602 to perform one or more methods or 
various embodiments . One example computing device in the 20 algorithms described herein . 
form of a computer 1600 may include a processing unit Although a few embodiments have been described in 
1602 , memory 1603 , removable storage 1610 , and non- detail above , other modifications are possible . For example , 
removable storage 1612. Although the example computing the logic flows depicted in the figures do not require the 
device is illustrated and described as computer 1600 , the particular order shown , or sequential order , to achieve 
computing device may be in different forms in different 25 desirable results . Other steps may be provided , or steps may 
embodiments . For example , the computing device may be eliminated , from the described flows , and other compo 
instead be a smartphone , a tablet , smartwatch , or other nents may be added to , or removed from , the described 
computing device including the same or similar elements as systems . Other embodiments may be within the scope of the 
illustrated and described with regard to FIG . 16. Devices , following claims . 
such as smartphones , tablets , and smartwatches , are gener- 30 It should be further understood that software including 
ally collectively referred to as mobile devices or user one or more computer - executable instructions that facilitate 
equipment . Further , although the various data storage ele- processing and operations as described above with reference 
ments are illustrated as part of the computer 1600 , the to any one or all of steps of the disclosure can be installed 
storage may also or alternatively include cloud - based stor- in and sold with one or more computing devices consistent 
age accessible via a network , such as the Internet or server- 35 with the disclosure . Alternatively , the software can be 
based storage . obtained and loaded into one or more computing devices , 
Memory 1603 may include volatile memory 1614 and including obtaining the software through physical medium 

non - volatile memory 1608. Computer 1600 may include or distribution system , including , for example , from a server 
or have access to a computing environment that includes- owned by the software creator or from a server not owned 
variety of computer - readable media , such as volatile 40 but used by the software creator . The software can be stored 
memory 1614 and non - volatile memory 1608 , removable on a server for distribution over the Internet , for example . 
storage 1610 and non - removable storage 1612. Computer Also , it will be understood by one skilled in the art that 
storage includes random access memory ( RAM ) , read only this disclosure is not limited in its application to the details 
memory ( ROM ) , erasable programmable read - only memory of construction and the arrangement of components set forth 
( EPROM ) or electrically erasable programmable read - only 45 in the description or illustrated in the drawings . The embodi 
memory ( EEPROM ) , flash memory or other memory tech- ments herein are capable of other embodiments , and capable 
nologies , compact disc read - only memory ( CD ROM ) , Digi- of being practiced or carried out in various ways . Also , it 
tal Versatile Disks ( DVD ) or other optical disk storage , will be understood that the phraseology and terminology 
magnetic cassettes , magnetic tape , magnetic disk storage or used herein is for the purpose of description and should not 
other magnetic storage devices , or any other medium 50 be regarded as limiting . The use of “ including , " " compris 
capable of storing computer - readable instructions . ing , ” or “ having ” and variations thereof herein is meant to 

Computer 1600 may include or have access to a comput- encompass the items listed thereafter and equivalents thereof 
ing environment that includes input interface 1606 , output as well as additional items . Unless limited otherwise , the 
interface 1604 , and a communication interface 1616. Output terms “ connected , " " coupled , ” and “ mounted , ” and varia 
interface 1604 may include a display device , such as a 55 tions thereof herein are used broadly and encompass direct 
touchscreen , that also may serve as an input device . The and indirect connections , couplings , and mountings . In 
input interface 1606 may include one or more of a touch- addition , the terms " connected " and " coupled ” and varia 
screen , touchpad , mouse , keyboard , camera , one or more tions thereof are not restricted to physical or mechanical 
device - specific buttons , one or more sensors integrated connections or couplings . 
within or coupled via wired or wireless data connections to 60 The components of the illustrative devices , systems and 
the computer 1600 , and other input devices . methods employed in accordance with the illustrated 

The computer 1600 may operate in a networked environ- embodiments can be implemented , at least in part , in digital 
ment using a communication connection to connect to one or electronic circuitry , analog electronic circuitry , or in com 
more remote computers , such as database servers . The puter hardware , firmware , software , or in combinations of 
remote computer may include a personal computer ( PC ) , 65 them . These components can be implemented , for example , 
server , router , network PC , a peer device or other common as a computer program product such as a computer program , 
DFD network switch , or the like . The communication con- program code or computer instructions tangibly embodied in 

a 
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an information carrier , or in a machine - readable storage chips that may be referenced throughout the above descrip 
device , for execution by , or to control the operation of , data tion may be represented by voltages , currents , electromag 
processing apparatus such as a programmable processor , a netic waves , magnetic fields or particles , optical fields or 
computer , or multiple computers . particles , or any combination thereof . 
A computer program can be written in any form of 5 As used herein , “ machine - readable medium ” means a 

programming language , including compiled or interpreted device able to store instructions and data temporarily or 
languages , and it can be deployed in any form , including as permanently and may include , but is not limited to , random 
a stand - alone program or as a module , component , subrou- access memory ( RAM ) , read - only memory ( ROM ) , buffer 
tine , or other unit suitable for use in a computing environ- memory , flash memory , optical media , magnetic media , 
ment . A computer program can be deployed to be executed 10 cache memory , other types of storage ( e.g. , Erasable Pro 
on one computer or on multiple computers at one site or grammable Read - Only Memory ( EEPROM ) ) , and / or any 
distributed across multiple sites and interconnected by a suitable combination thereof . The term " machine - readable 
communication network . Also , functional programs , codes , medium ” should be taken to include a single medium or 
and code segments for accomplishing the techniques multiple media ( e.g. , a centralized or distributed database , or 
described herein can be easily construed as within the scope 15 associated caches and servers ) able to store processor 
of the claims by programmers skilled in the art to which the instructions . The term “ machine - readable medium ” shall 
techniques described herein pertain . Method steps associ- also be taken to include any medium , or combination of 
ated with the illustrative embodiments can be performed by multiple media , that is capable of storing instructions for 
one or more programmable processors executing a computer execution by one or more processors 602 , such that the 
program , code or instructions to perform functions ( e.g. , by 20 instructions , upon execution by one or more processors 602 
operating on input data and / or generating an output ) . cause the one or more processors 602 to perform any one or 
Method steps can also be performed by , and apparatus for more of the methodologies described herein . Accordingly , a 
performing the methods can be implemented as , special “ machine - readable medium ” refers to a single storage appa 
purpose logic circuitry , e.g. , an FPGA ( field programmable ratus or device , as well as “ cloud - based ” storage systems 
gate array ) or an ASIC ( application - specific integrated cir- 25 that include multiple storage apparatus or devices . 
cuit ) , for example . In addition , techniques , systems , subsystems , and meth 

The various illustrative logical blocks , modules , and ods described and illustrated in the various embodiments as 
circuits described in connection with the embodiments dis- discrete or separate may be combined or integrated with 
closed herein may be implemented or performed with a other systems , modules , techniques , or methods without 
general - purpose processor , a digital signal processor ( DSP ) , 30 departing from the scope of the present disclosure . Other 
an ASIC , a FPGA or other programmable logic device , items shown or discussed as coupled or directly coupled or 
discrete gate or transistor logic , discrete hardware compo- communicating with each other may be indirectly coupled or 
nents , or any combination thereof designed perform the communicating through some interface , device , or interme 
functions described herein . A general - purpose processor diate component whether electrically , mechanically , or oth 
may be a microprocessor , but in the alternative , the proces- 35 erwise . Other examples of changes , substitutions , and altera 
sor may be any conventional processor , controller , micro- tions are ascertainable by one skilled in the art and could be 
controller , or state machine . A processor may also be imple- made without departing from the scope disclosed herein . 
mented as a combination of computing devices , e.g. , a Although the present disclosure has been described with 
combination of a DSP and a microprocessor , a plurality of reference to specific features and embodiments thereof , it is 
microprocessors , one or more microprocessors in conjunc- 40 evident that various modifications and combinations can be 
tion with a DSP core , or any other such configuration . made thereto without departing from the scope of the 

Processors suitable for the execution of a computer pro- disclosure . The specification and drawings are , accordingly , 
gram include , by way of example , both general and special to be regarded simply as an illustration of the disclosure as 
purpose microprocessors , and any one or more processors of defined by the appended claims , and are contemplated to 
any kind of digital computer . Generally , a processor will 45 cover any and all modifications , variations , combinations or 
receive instructions and data from a read - only memory or a equivalents that fall within the scope of the present disclo 
random - access memory or both . The required elements of a 
computer are a processor for executing instructions and one 
or more memory devices for storing instructions and data . What is claimed is : 
Generally , a computer will also include , or be operatively 50 1. A graph processing system for concurrent property 
coupled to receive data from or transfer data to , or both , one graph queries of a property graph where the property graph 
or more mass storage devices for storing data , e.g. , mag- is implemented in a distributed network of nodes , compris 
netic , magneto - optical disks , or optical disks . Information ing : 
carriers suitable for embodying computer program instruc- at least one processor ; and 
tions and data include all forms of non - volatile memory , 55 a machine - readable medium comprising instructions 
including by way of example , semiconductor memory thereon that , when executed by the at least one proces 
devices , e.g. , electrically programmable read - only memory sor , causes the at least one processor to perform opera 
or ROM ( EPROM ) , electrically erasable programmable tions including : 
ROM ( EEPROM ) , flash memory devices , and data storage determining on a node of a plurality of nodes within the 
disks ( e.g. , magnetic disks , internal hard disks , or removable 60 distributed network of nodes a subgraph shard of a 
disks , magneto - optical disks , and CD - ROM and DVD - ROM plurality of subgraph shards of the property graph , 
disks ) . The processor and the memory can be supplemented the node storing data for the subgraph shard that 
by or incorporated in special purpose logic circuitry . contains a range of local vertices that are a subset of 

Those of skill in the art understand that information and all vertices of the property graph , the subgraph shard 
signals may be represented using any of a variety of different 65 having boundary vertices that have edges that con 
technologies and techniques . For example , data , instruc nect the subgraph shard to boundary vertices of 
tions , commands , information , signals , bits , symbols , and another subgraph shard ; 

sure . 
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converting the subgraph shard into a set of edge - sets that , when executed by the at least one processor , causes the 
containing vertices within a certain range by vertex at least one processor to utilize dynamic resource allocation 
identifier ; during traversals of the property graph and to store values 

receiving concurrent queries of the property graph from for a previous and a current level of the property graph . 
at least one user ; 10. The graph processing system as in claim 1 , wherein 

scheduling a query of the subgraph shard of the plu- the machine - readable medium further comprises instruc 
rality of subgraph shards in accordance with an tions that , when executed by the at least one processor , 
initial vertex for each concurrent user query ; and causes the at least one processor to assign vertices of the 

traversing the property graph during execution of the property graph to different subgraph shards based on vertex 
concurrent queries by traversing edge - sets within the 10 identifier and to assign all out - going edges of a vertex to a 
subgraph shard , wherein the node sends values of same subgraph shard . 
boundary vertices of the subgraph shard to at least 11. A method for concurrently querying a property graph 
one other node having another subgraph shard shar- implemented in a distributed network of nodes , comprising : 
ing the boundary vertices using messaging during determining on a node of a plurality of nodes within the 
traversal of the property graph . distributed network of nodes a subgraph shard of a 

2. The graph processing system as in claim 1 , wherein plurality of subgraph shards of the property graph , the 
each subgraph shard on each node comprises two bit arrays , node storing data for the subgraph shard that contains 
a first array for marking a list of adjacent vertices to visit in a range of local vertices that are a subset of all vertices 
a next iteration of traversal of the subgraph shard and a of the property graph , the subgraph shard having 
second array for verifying vertices in the subgraph shard that 20 boundary vertices that have edges that connect the 
already have been visited , the first array and second array subgraph shard to boundary vertices of another sub 
having a size N by k , where N is a number of vertices in the graph shard , the subgraph shard comprising a set of 
subgraph shard and k is a number of concurrent user queries . edge - sets containing vertices within a certain range by 

3. The graph processing system as in claim 2 , wherein vertex identifier ; 
traversing the property graph further comprises finding 25 receiving concurrent queries of the property graph from at 
unvisited neighbor nodes in the edge - sets and populating the least one user ; 
unvisited neighbor nodes into the first array , visiting the scheduling a query of the subgraph shard of the plurality 
unvisited neighbor nodes and checking for unvisited neigh- of subgraph shards in accordance with an initial vertex 
bor nodes , and repeating the visiting and checking for for each concurrent user query ; 
different nodes including at least one of the plurality of 30 traversing the property graph during execution of the 
subgraph shards . concurrent queries by traversing edge - sets within the 

4. The graph processing system as in claim 1 , wherein the subgraph shard ; and 
node provides to the subgraph shard on the node an inbox for the node sending values of boundary vertices of the 
receiving messages from a neighbor subgraph shard and an subgraph shard to least one other node having 
outbox for providing messages to the neighbor subgraph 35 another subgraph shard sharing the boundary vertices 
shard when the neighbor subgraph shard is located on using messaging during traversal of the property graph . 
another node in the distributed network of nodes . 12. The method of claim 11 , wherein traversing the 

5. The graph processing system as in claim 4 , wherein the property graph further comprises finding unvisited neighbor 
machine - readable medium further comprises instructions nodes in the edge - sets and populating the unvisited neighbor 
that , when executed by the at least one processor , causes the 40 nodes into a first array for marking a list of adjacent vertices 
at least one processor to traverse the property graph during to visit in a next iteration of traversal of the subgraph shard , 
execution of the concurrent queries by starting from each visiting the unvisited neighbor nodes and checking for 
root and propagating a unique label to each neighbor vertex unvisited neighbor nodes , and repeating the visiting and 
to mark traversed edges in an edge - set of the subgraph shard checking for different nodes including at least one of the 
and by using the inbox and outbox to buffer the unique labels 45 plurality of subgraph shards . 
sent to and received from the neighbor subgraph shard on the 13. The method of claim 12 , wherein traversing the 
another node in the distributed network of nodes . property graph further comprises keeping a record of verti 

6. The graph processing system as in claim 1 , wherein the ces in the subgraph shard that already have been visited in 
machine - readable medium further comprises instructions a second array , the first array and second array having a size 
that , when executed by the at least one processor , causes the 50 N by k , where N is a number of vertices in the subgraph 
at least one processor to optimize respective edge - sets for shard and k is a number of concurrent user queries . 
sparsity and cache locality . 14. The method of claim 11 , wherein traversing the 

7. The graph processing system as in claim 1 , wherein property graph further comprises providing messages to an 
traversing the property graph comprises traversing ( 1 ) outbox destined for a neighbor node on a neighbor subgraph 
shared neighbor vertices of adjacent vertices to visit in a next 55 shard when the neighbor subgraph shard is located on 
iteration of traversal of the subgraph shard within an edge- another node in the distributed network of nodes . 
set and ( 2 ) shared vertices among concurrent queries only 15. The method of claim 14 , wherein traversing the 
one time for the concurrent queries . property graph further comprises starting from each root 

8. The graph processing system as in claim 7 , wherein specified by the query and propagating a unique label to each 
traversing the property graph comprises eliminating 60 neighbor vertex to mark traversed edges in an edge - set of the 
repeated traversals of the property graph for a set of queries subgraph shard and buffering the unique labels to send to 
according to the shared neighbor vertices of adjacent verti- and receive from the neighbor subgraph shard on the another 
ces and shared vertices among concurrent queries within the node in the distributed network of nodes . 
edge - set , wherein the edge - set is accessed once and data 16. The method of claim 11 , further comprising optimiz 
therefrom is cached for re - use . 65 ing respective edge - sets for sparsity and cache locality . 

9. The graph processing system as in claim 1 , wherein the 17. The method of claim 11 , wherein traversing the 
machine - readable medium further comprises instructions property graph further comprises traversing ( 1 ) shared 
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neighbor vertices of adjacent vertices to visit in a next plurality of subgraph shards of the property graph , the 
iteration of traversal of the subgraph shard within an edge- node storing data for the subgraph shard that contains 
set and ( 2 ) shared vertices among concurrent queries only a range of local vertices that are a subset of all vertices 
one time for the concurrent queries . of the property graph , the subgraph shard having 

18. The method of claim 17 , wherein traversing the 5 boundary vertices that have edges that connect the 
property graph further comprises eliminating repeated tra subgraph shard to boundary vertices of another sub 
versals of the property graph for a set of concurrent queries graph shard , the subgraph shard comprising a set of 
according to the shared neighbor vertices of adjacent verti edge - sets containing vertices within a certain range by 

vertex identifier ; ces and shared vertices among concurrent queries within the 
edge - set , accessing the edge - set once , and caching data receiving concurrent queries of the property graph from at 

least one user ; therefrom for re - use . 
19. The method of claim 11 , further comprising utilizing scheduling a query of the subgraph shard of the plurality 

dynamic resource allocation during traversals of the prop of subgraph shards in accordance with an initial vertex 
for each concurrent user query ; erty graph to store values for a previous and a current level 

of the property graph . traversing the property graph during execution of the 
20. A non - transitory computer - readable medium storing concurrent queries by traversing edge - sets within the 

computer instructions for concurrently querying a property subgraph shard ; and 
graph implemented in a distributed network of nodes , that the node sending values of boundary vertices of the 
when executed by one or more processors , cause the one or subgraph shard to least one other node having 
more processors to perform operations comprising : another subgraph shard sharing the boundary vertices 

determining on a node of a plurality of nodes within the using messaging during traversal of the property graph . 
distributed network of nodes a subgraph shard of a 
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